could not fine compatible graphic hardware: visual studio integration failed

本文提供了一种解决CUDA安装过程中出现“couldnotfinecompatiblegraphichardware”错误的方法。该方案包括清除CUDA环境、安装标准VGA驱动程序以及删除所有CUDA相关文件等步骤。
部署运行你感兴趣的模型镜像

问题:Cuda安装中提示could not fine compatible graphic hardware(截图如下),并最终安装失败,查看失败项是:visual studio integration failed。

解决方案:清理cuda环境,安装基础网卡驱动再安装cuda。

I had the same problem and finally I could find a solution. Visual Studio integration failed every time. I tried all possible combinations and nothing worked (Visualstudio 2010, VisualStudio 2017, Cuda 9.1.85, 9.0, 8.0, 7.5). I also tried reinstall windows 10 in all possible ways. Fortunately the method sugested by @oregonduckman and orangesherbet0 worked for me (https://devtalk.nvidia.com/default/topic/1033111/cuda-setup-and-installation/cuda-9-1-cannot-install-due-to-failed-visual-studio-integration/):

Step 1: Install the standard VGA driver:
1. Bring up the Windows Device Manager. You can do that my right-clicking on the Start button and then select Device Manager.
2. Expand the "Display Adapter" list, right-click on the GeForce card and then select "Update Driver Software".
3. Click "Browse my computer for driver software".
4. Then click the "Let me pick from a list of device drivers on my computer".
5. Uncheck the "Show compatible hardware" option.
6. Under the "Manufacture" scroll to the top and select the "(Standard display type)" and then click "Next". If you are running multiple GPUs then repeat steps #2 - #6 for each GPU.
7. Restart Windows. This will basically load the standard VGA driver.

Step 2: Delete all Cuda reference:
1. In Windows Services, stop all nvidia services
2. Delete all nvidia files from C:\ProgramData, C:\Program Files, C:\Program Files(x86). 
3. Proceed with cuda installation.

Step 3: Install correct version Nvidia graphic dirver, if not, tensorflow will not find cuda capatible graphic device and lead to an error "ImportError: Could not find 'nvcuda.dll'. TensorFlow requires that this DLL be installed in a directory that is named in your %PATH% environment variable".

eg. I must install GF 1060 MaxQ dirver.

could not fine compatible graphic hardware其它可能导致的原因是cuda中驱动的版本低于机器已安装版本,此时解决方案是安装cuda时自定义不安装驱动。还有一些歪招是禁用非Nvidia显卡。

 

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值