Counting Divisors
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)Total Submission(s): 1286 Accepted Submission(s): 454
Problem Description
In mathematics, the function
d(n)
denotes the number of divisors of positive integer
n
.
For example, d(12)=6 because 1,2,3,4,6,12 are all 12 's divisors.
In this problem, given l,r and k , your task is to calculate the following thing :
For example, d(12)=6 because 1,2,3,4,6,12 are all 12 's divisors.
In this problem, given l,r and k , your task is to calculate the following thing :
(∑i=lrd(ik))mod998244353
Input
The first line of the input contains an integer
T(1≤T≤15)
, denoting the number of test cases.
In each test case, there are 3 integers l,r,k(1≤l≤r≤1012,r−l≤106,1≤k≤107) .
In each test case, there are 3 integers l,r,k(1≤l≤r≤1012,r−l≤106,1≤k≤107) .
Output
For each test case, print a single line containing an integer, denoting the answer.
Sample Input
3 1 5 1 1 10 2 1 100 3
Sample Output
10 48 2302
Source
自己写的代码:
#include<cstdio>
typedef long long ll;
const int N=1000010,P=998244353;
int Case,i,j,k,p[N/10],tot,g[N],ans;
ll n,l,r,f[N];
bool v[N];
inline void work(ll p)
{
for(ll i=l/p*p; i<=r; i+=p)if(i>=l)
{
int o=0;
while(f[i-l]%p==0)f[i-l]/=p,o++;
g[i-l]=1LL*g[i-l]*(o*k+1)%P;
}
}
int main()
{
for(i=2; i<N; i++)
{
if(!v[i])p[tot++]=i;
for(j=0; j<tot&&i*p[j]<N; j++)
{
v[i*p[j]]=1;
if(i%p[j]==0)break;
}
}
// 素数筛法
scanf("%d",&Case);
while(Case--)
{
scanf("%lld%lld%d",&l,&r,&k);
n=r-l;
for(i=0; i<=n; i++)f[i]=i+l,g[i]=1;
for(i=0; i<tot; i++)
{
if(1LL*p[i]*p[i]>r)break;
work(p[i]);
}
for(ans=i=0; i<=n; i++)
{
if(f[i]>1)g[i]=1LL*g[i]*(k+1)%P;
ans=(ans+g[i])%P;
}
printf("%d\n",ans);
}
return 0;
}
显然服务器只要稍微一不高兴,就给你卡了。
陈老师的代码:
#include<cstdio>
typedef long long ll;
const int N=1000010,P=998244353;
int Case,i,j,k,p[N/10],tot,g[N],ans;
ll n,l,r,f[N];
bool v[N];
inline void work(ll p)
{
for(ll i=l/p*p; i<=r; i+=p)if(i>=l)
{
int o=0;
while(f[i-l]%p==0)f[i-l]/=p,o++;
g[i-l]=1LL*g[i-l]*(o*k+1)%P;
}
}
int main()
{
for(i=2; i<N; i++)
{
if(!v[i])p[tot++]=i;
for(j=0; j<tot&&i*p[j]<N; j++)
{
v[i*p[j]]=1;
if(i%p[j]==0)break;
}
}
// 素数筛法
scanf("%d",&Case);
while(Case--)
{
scanf("%lld%lld%d",&l,&r,&k);
n=r-l;
for(i=0; i<=n; i++)f[i]=i+l,g[i]=1;
for(i=0; i<tot; i++)
{
if(1LL*p[i]*p[i]>r)break;
work(p[i]);
}
for(ans=i=0; i<=n; i++)
{
if(f[i]>1)g[i]=1LL*g[i]*(k+1)%P;
ans=(ans+g[i])%P;
}
printf("%d\n",ans);
}
return 0;
}
无论怎么卡也可以过。这个就是实现问题吧。