目录
2. ⼤⼩端字节序和字节序判断
当我们了解了整数在内存中存储后,我们调试看⼀个细节:
#include <stdio.h>
int main()
{
int a = 0x11223344;
return 0;
}
调试的时候,我们可以看到在a中的 0x11223344 这个数字是按照字节为单位,倒着存储的。这是为 什么呢?
2.1 什么是⼤⼩端?
其实超过⼀个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分 为⼤端字节序存储和⼩端字节序存储,下⾯是具体的概念:
⼤端(存储)模式:
是指数据的低位字节内容保存在内存的⾼地址处,⽽数据的⾼位字节内容,保存在内存的低地址处。
⼩端(存储)模式:
是指数据的低位字节内容保存在内存的低地址处,⽽数据的⾼位字节内容,保存在内存的⾼地址处。
上述概念需要记住,⽅便分辨⼤⼩端。
2.2 为什么有⼤⼩端?
为什么会有⼤⼩端模式之分呢?
这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着⼀个字节,⼀个字节为8 bit位,但是在C语⾔中除了8bit的 char 之外,还有16bit的 short 型,32bit的 long 型(要看 具体的编译器),另外,对于位数⼤于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度⼤ 于⼀个字节,那么必然存在着⼀个如何将多个字节安排的问题。因此就导致了⼤端存储模式和⼩端存 储模式。
例如:⼀个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么
0x11 为⾼字节, 0x22 为低字节。对于⼤端模式,就将 0x11 放在低地址中,即 0x0010 中,
0x22 放在⾼地址中,即 0x0011 中。⼩端模式,刚好相反。我们常⽤的 X86 结构是⼩端模式,⽽
KEIL C51 则为⼤端模式。很多的ARM,DSP都为⼩端模式。有些ARM处理器还可以由硬件来选择是 ⼤端模式还是⼩端模式。
2.3 练习
2.3.1 练习1
请简述⼤端字节序和⼩端字节序的概念,设计⼀个⼩程序来判断当前机器的字节序。(10分)-百度笔 试题
//代码1
#include <stdio.h>
int check_sys()
{
int i = 1;
return (*(char *)&i);
}
int main()
{
int ret = check_sys();
if(ret == 1)
{
printf("⼩端\n");
}
else
{
printf("⼤端\n");
}
return 0;
//代码2
int check_sys()
{
union
{
int i;
char c;
}un;
un.i = 1;
return un.c;
}
2.3.2 练习2
#include <stdio.h>
int main()
{
char a= -1;
signed char b=-1;
unsigned char c=-1;
printf("a=%d,b=%d,c=%d",a,b,c);
return 0;
}
2.3.3 练习3
#include <stdio.h>
int main()
{
char a = -128;
printf("%u\n",a);
return 0;
}
#include <stdio.h>
int main()
{
char a = 128;
printf("%u\n",a);
return 0;
}
2.3.4 练习4
#include <stdio.h>
int main()
{
char a[1000];
int i;
for(i=0; i<1000; i++)
{
a[i] = -1-i;
}
printf("%d",strlen(a));
return 0;
}
2.3.5 练习5
#include <stdio.h>
unsigned char i = 0;
int main()
{
for(i = 0;i<=255;i++)
{
printf("hello world\n");
}
return 0;
}
#include <stdio.h>
int main()
{
unsigned int i;
for(i = 9; i >= 0; i--)
{
printf("%u\n",i);
}
return 0;
}
2.3.6 练习6
#include <stdio.h>
//X86环境 ⼩端字节序
int main()
{
int a[4] = { 1, 2, 3, 4 };
int *ptr1 = (int *)(&a + 1);
int *ptr2 = (int *)((int)a + 1);
printf("%x,%x", ptr1[-1], *ptr2);
return 0;
}
代码输出的结果是啥?