Codeforces Round #332 (Div. 2) C. Day at the Beach

Squidward, Spongebob 和 Patrick 在海滩上建造了 n 座沙堡,但城堡高度未按顺序排列。他们决定通过将城堡分为多个连续块并独立排序来优化城堡排列。本篇博客详细介绍了如何最大化分块数量,使得最终排序后的城堡高度序列不降序。
C. Day at the Beach
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

One day Squidward, Spongebob and Patrick decided to go to the beach. Unfortunately, the weather was bad, so the friends were unable to ride waves. However, they decided to spent their time building sand castles.

At the end of the day there were n castles built by friends. Castles are numbered from 1 to n, and the height of the i-th castle is equal tohi. When friends were about to leave, Squidward noticed, that castles are not ordered by their height, and this looks ugly. Now friends are going to reorder the castles in a way to obtain that condition hi ≤ hi + 1 holds for all i from 1 to n - 1.

Squidward suggested the following process of sorting castles:

  • Castles are split into blocks — groups of consecutive castles. Therefore the block from i to j will include castles i, i + 1, ..., j. A block may consist of a single castle.
  • The partitioning is chosen in such a way that every castle is a part of exactly one block.
  • Each block is sorted independently from other blocks, that is the sequence hi, hi + 1, ..., hj becomes sorted.
  • The partitioning should satisfy the condition that after each block is sorted, the sequence hi becomes sorted too. This may always be achieved by saying that the whole sequence is a single block.

Even Patrick understands that increasing the number of blocks in partitioning will ease the sorting process. Now friends ask you to count the maximum possible number of blocks in a partitioning that satisfies all the above requirements.

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 100 000) — the number of castles Spongebob, Patrick and Squidward made from sand during the day.

The next line contains n integers hi (1 ≤ hi ≤ 109). The i-th of these integers corresponds to the height of the i-th castle.

Output

Print the maximum possible number of blocks in a valid partitioning.

Sample test(s)
input
3
1 2 3
output
3
input
4
2 1 3 2
output
2
Note

In the first sample the partitioning looks like that: [1][2][3].

In the second sample the partitioning is: [2, 1][3, 2]


题意:就是给你一个序列,然后你把这个序列分为几个连续的块,每个块独自排序,最多可以分几个块最后排序后整个序列是不下降的。

思路:模拟,每个块的最小值要小于前面块的最大值,对于新的一个数,如果不大于前面的最大值就和前面的合并,同时更新前面的最大值和最小值,继续往前面更新,直到满足条件。

#include<stdio.h.>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<queue>
#include<map>
#include<vector>
#include<set>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
int x[100010],mx[100010],mi[100010];
int main()
{
    int n;
    while(cin>>n)
    {
        for(int i = 1; i<=n; i++)
        {
            scanf("%d", &x[i]);
            mx[i] = x[i];
            mi[i] = x[i];
        }
        int ans = 1;
        mx[0] = -1;
        mi[0] = -1;
        id[1] = 1;
        for(int i = 2; i<=n; i++)
        {
            ans++;
            mx[ans] = x[i];
            mi[ans] = x[i];
            while(mi[ans]<mx[ans-1])
            {
                if(mi[ans] < mi[ans-1])
                    mi[ans-1] = mi[ans];
                ans--;
                mx[ans] = max(mx[ans+1],mx[ans]);
            }
        }
        cout<<ans<<endl;
    }
    return 0;
}

【负荷预测】基于VMD-CNN-LSTM的负荷预测研究(Python代码实现)内容概要:本文介绍了基于变分模态分解(VMD)、卷积神经网络(CNN)和长短期记忆网络(LSTM)相结合的VMD-CNN-LSTM模型在负荷预测中的研究与应用,采用Python代码实现。该方法首先利用VMD对原始负荷数据进行分解,降低序列复杂性并提取不同频率的模态分量;随后通过CNN提取各模态的局部特征;最后由LSTM捕捉时间序列的长期依赖关系,实现高精度的负荷预测。该模型有效提升了预测精度,尤其适用于非平稳、非线性的电力负荷数据,具有较强的鲁棒性和泛化能力。; 适合人群:具备一定Python编程基础和深度学习背景,从事电力系统、能源管理或时间序列预测相关研究的科研人员及工程技术人员,尤其适合研究生、高校教师及电力行业从业者。; 使用场景及目标:①应用于日前、日内及实时负荷预测场景,支持智慧电网调度与能源优化管理;②为研究复合型深度学习模型在非线性时间序列预测中的设计与实现提供参考;③可用于学术复现、课题研究或实际项目开发中提升预测性能。; 阅读建议:建议读者结合提供的Python代码,深入理解VMD信号分解机制、CNN特征提取原理及LSTM时序建模过程,通过实验调试参数(如VMD的分解层数K、惩罚因子α等)优化模型性能,并可进一步拓展至风电、光伏等其他能源预测领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值