hausdorff distance 豪斯多夫距离

Hausdorff距离详解
本文详细介绍了Hausdorff距离的概念及其计算方法。Hausdorff距离是一种衡量两个点集间相似度的有效手段,通过计算点集间的最大不匹配程度来评估其相似性。文章解释了如何计算单向及双向Hausdorff距离,并提供了直观的理解方式。
部署运行你感兴趣的模型镜像

转载自:http://www.cnblogs.com/yhlx125/p/5478147.html

Hausdorff距离是描述两组点集之间相似程度的一种量度,它是两个点集之间距离的一种定义形式:假设有两组集合A={a1,…,ap},B={b1,…,bq},则这两个点集合之间的Hausdorff距离定义为

  H(A,B)=max(h(A,B),h(B,A))                    (1)

  其中,

  h(A,B)=max(a∈A)min(b∈B)‖a-b‖     (2)

  h(B,A)=max(b∈B)min(a∈A)‖b-a‖     (3)

  ‖·‖是点集A和B点集间的距离范式(如:L2或Euclidean距离).

  这里,式(1)称为双向Hausdorff距离,是Hausdorff距离的最基本形式;式(2)中的h(A,B)和h(B,A)分别称为从A集合到B集合和从B集合到A集合的单向Hausdorff距离.即h(A,B)实际上首先对点集A中的每个点ai到距离此点ai最近的B集合中点bj之间的距离‖ai-bj‖进行排序,然后取该距离中的最大值作为h(A,B)的值.h(B,A)同理可得.

  由式(1)知,双向Hausdorff距离H(A,B)是单向距离h(A,B)和h(B,A)两者中的较大者,它度量了两个点集间的最大不匹配程度.

http://blog.sina.com.cn/s/blog_5caa94a00100fa26.html

http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/98/normand/main.html

Hausdorff distance

H (A, B) = max { h (A, B), h (B, A) }

  

  

 

 

您可能感兴趣的与本文相关的镜像

HunyuanVideo-Foley

HunyuanVideo-Foley

语音合成

HunyuanVideo-Foley是由腾讯混元2025年8月28日宣布开源端到端视频音效生成模型,用户只需输入视频和文字,就能为视频匹配电影级音效

评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值