Spark 颠覆 MapReduce 保持的排序记录

Spark在AWS上使用较少的计算资源,完成了比Hadoop MapReduce更快的大规模数据排序,包括100TB数据的23分钟排序和1PB数据的4小时排序。

在过去几年,Apache Spark的采用以惊人的速度增加着,通常被作为MapReduce后继,可以支撑数千节点规模的集群部署。在内存中数 据处理上,Apache Spark比MapReduce更加高效已经得到广泛认识;但是当数据量远超内存容量时,我们也听到了一些机构在Spark使用 上的困扰。因此,我们与Spark社区一起,投入了大量的精力做Spark稳定性、扩展性、性能等方面的提升。既然Spark在GB或TB级别数据上运行 良好,那么它在PB级数据上也应当同样如此。

为了评估这些工作,最近我们与AWS一起完成了一个Sort Benchmark(Daytona Gray类别)测试,一个考量系统排序 100TB数据(万亿条记录)速度的行业基准测试。在此之前,这项基准测试的世界记录保持者是雅虎,使用2100节点的Hadoop MapReduce 集群在72分钟内完成计算。而根据测试结果得知,在使用了206个EC2节点的情况下,Spark将排序用时缩短到了23分钟。这意味着在使用十分之一计 算资源的情况下,相同数据的排序上,Spark比MapReduce快3倍!

此外,在没有官方PB排序对比的情况下,我们首次将Spark推到了1PB数据(十万亿条记录)的排序。这个测试的结果是,在使用190个节点的情 况下,工作负载在短短不到4小时内完成,同样远超雅虎之前使用3800台主机耗时16个小时的记录。同时,据我们所知,这也是公用云环境首次完成的PB级 排序测试。


Hadoop World Record Spark 100 TB Spark 1 PB
Data Size 102.5 TB 100 TB 1000 TB
Elapsed Time 72 mins 23 mins 234 mins
# Nodes 2100 206 190
# Cores 50400 6592 6080
# Reducers 10,000 29,000 250,000

1.42 TB/min 4.27 TB/min 4.27 TB/min
Rate/node 0.67 GB/min 20.7 GB/min 22.5 GB/min
Sort Benchmark Daytona Rules Yes Yes No
Environment dedicated data center EC2 (i2.8xlarge) EC2 (i2.8xlarge)

为什么会选择排序?    

排序的核心是shuffle操作,数据的传输会横跨集群中所有主机。Shuffle基本支持了所有的分布式数据处理负载。举个例子,在一个 连接了两个不同数据源的SQL查询中,会使用shuffle将需要连接数据的元组移动到同一台主机;同时,类似ALS等协同过滤算法同样需要依赖 shuffle在网络中发送用户或产品的评级(ratings)和权重(weights)。

大部分数据管道开始时都会有大量的原始数据,但是在管道处理过程中,随着越来越多不相干数据被过滤,或者中间数据被更简洁的表示,数据量必 然会减少。在100TB原始数据的查询上,网络上shuffle的数据可能只有100TB的一小部分,这种模式也体现在MapReduce的命名。

然而,排序却是非常有挑战的,因为数据管道中的数据量并不会减少。如果对100TB的原始数据进行排序,网络中shuffle的数据必然也 是100TB。同时,在Daytona类型的基准测试中,为了容错,不管是输入数据还是输出数据都需要做备份。实际上,在100TB的数据排序上,我们可 能会产生500TB的磁盘I/O及200TB的网络I/O。

因此,基于上述原因,当我们寻找Spark的测量标准和提升办法时,排序这个最苛刻的工作负载成为了对比的不二之选。

产生如此结果的技术实现    

在超大规模工作负载上,我们投入了大量的精力来提升Spark。从细节上看,与这个基准测试高度相关的工作主要有3个: 

首先及最关键的,在Spark 1.1中我们引入了一个全新的shuffle实现,也就是基于排序的 shuffle(SPARK­2045)。在此之前,Spark做的是基于哈希的shuffle实现,它需要在内存中同时保持P(reduce的分割数 量)个缓冲区。而在基于排序的shuffle下,任何时候系统只使用一个缓冲区。这个操作将显著地减少内存开销,因此同一个场景下可以支撑数十万任务(我 们在PB排序中使用了2.5万个任务)。

其次,我们修订了Spark的网络模型,通过JNI(SPARK­2468)使用基于Netty的Epoll本地端口传输。同时,新的模型还拥有了独立的内存池,绕过了JVM的内存分配器,从而减少垃圾回收造成的影响。

最后但同样重要的是,我们建立了一个外部shuffle服务(SPARK­3796),它与Spark本身的执行器完全解耦。这个新的服务基于上文所述的网络模型,同时,在Spark本身的执行器忙于GC处理时,它仍然可以保证shuffle文件处理的继续执行。

           Spark 颠覆 MapReduce 保持的排序记录               
   

通过这三项改变,我们的Spark集群在map阶段单 节点可以支撑每秒3GB的IO吞吐,在reduce阶段单节点可以支撑1.1GB,从而榨干这些机器间10Gbps的网络带宽。

更多的技术细节    

TimSort:在Spark 1.1版本中,我们将默认排序算法从 quicksort转换到 TimSort,它是合并排 序和嵌入排序的一个衍生。在大部分现实世界数据集中,TimSort比quicksort更加高效,在部分排序数据中表现则更为优秀。不管在map阶段还 是Reduce阶段,我们都使用了TimSort。

缓存位置的利用:在排序基准测试中,每条记录的大小都是100字节,而被排序的键是前10个字节。在排序项目的 性能分析阶 段,我们注意到缓存命中率不如人意,因为每次比较都需要进行一个随机的对象指针查询。为此,我们重新设计了记录在内存的布局,用16字节长度(两个长整 形)的记录来表示每条记录。在这里,前10个字节代表了排序的键,后4个字节则代表了记录的位置(鉴于字节顺序和符号,这点并不容易发现)。这样一来,每 个比较只需要做一次缓存查询,而且它们都是连续的,从而避免了随机的内存查询。

使用TimSort和新的布局方式来利用缓存命中,排序所占用的CPU时间足足减少了5倍。

大规模下的容错机制:在大规模下,许多问题都会暴露。在这个测试过程中,我们看到因为网络连通问题出现的节点丢失,Linux内核自旋,以及因为内存碎片整理造成的节点停滞。幸运的是,Spark的容错机制非常好,并且顺利的进行故障恢复。

AWS的能量:如上文所述,我们使用了206个i2.8xlarge实例来跑这个I/O密集测试。通过SSD, 这些实例交付了非常高的I/O吞吐量。我们将这些实例放到一个VPC放置组中,从而通过单SR-IOV增强网络性能,以获得高性能(10Gbps)、低延 时和低抖动。        
   

Spark只能在内存中大放异彩?    

这个误解一直围绕着Spark,特别是刚进入社区中的新人更是如此认为。不错,Spark因为内存计算的高性能闻名,然而Spark的设计 初衷和理念却是一个通用的大数据处理平台——不管是使用内存还是磁盘。在数据无法完全放入内存时,基本上所有的Spark运算符都会做一些额外的处理。通 俗来说,Spark运算符是MapReduce的超集。

如本次测试所示,Spark可以胜任集群内存大小N倍的数据集处理。

总结    

击败Hadoop MapReduce集群创造的大规模数据处理记录不仅是对我们工作的一个证明,也是对Spark承诺的一个验证——在任何数据体积,Spark在性能和扩展性上都更具优势。同时,我们也希望在用户使用过程中,Spark可以带来时间和开销上的双节省。

下载前可以先看下教程 https://pan.quark.cn/s/a426667488ae 标题“仿淘宝jquery图片左右切换带数字”揭示了这是一个关于运用jQuery技术完成的图片轮播机制,其特色在于具备淘宝在线平台普遍存在的图片切换表现,并且在整个切换环节中会展示当前图片的序列号。 此类功能一般应用于电子商务平台的产品呈现环节,使用户可以便捷地查看多张商品的照片。 说明中的“NULL”表示未提供进一步的信息,但我们可以借助标题来揣摩若干核心的技术要点。 在构建此类功能时,开发者通常会借助以下技术手段:1. **jQuery库**:jQuery是一个应用广泛的JavaScript框架,它简化了HTML文档的遍历、事件管理、动画效果以及Ajax通信。 在此项目中,jQuery将负责处理用户的点击动作(实现左右切换),并且制造流畅的过渡效果。 2. **图片轮播扩展工具**:开发者或许会采用现成的jQuery扩展,例如Slick、Bootstrap Carousel或个性化的轮播函数,以达成图片切换的功能。 这些扩展能够辅助迅速构建功能完善的轮播模块。 3. **即时数字呈现**:展示当前图片的序列号,这需要通过JavaScript或jQuery来追踪并调整。 每当图片切换时,相应的数字也会同步更新。 4. **CSS美化**:为了达成淘宝图片切换的视觉效果,可能需要设计特定的CSS样式,涵盖图片的排列方式、过渡效果、点状指示器等。 CSS3的动画和过渡特性(如`transition`和`animation`)在此过程中扮演关键角色。 5. **事件监测**:运用jQuery的`.on()`方法来监测用户的操作,比如点击左右控制按钮或自动按时间间隔切换。 根据用户的交互,触发相应的函数来执行...
垃圾实例分割数据集 一、基础信息 • 数据集名称:垃圾实例分割数据集 • 图片数量: 训练集:7,000张图片 验证集:426张图片 测试集:644张图片 • 训练集:7,000张图片 • 验证集:426张图片 • 测试集:644张图片 • 分类类别: 垃圾(Sampah) • 垃圾(Sampah) • 标注格式:YOLO格式,包含实例分割的多边形点坐标,适用于实例分割任务。 • 数据格式:图片文件 二、适用场景 • 智能垃圾检测系统开发:数据集支持实例分割任务,帮助构建能够自动识别和分割图像中垃圾区域的AI模型,适用于智能清洁机器人、自动垃圾桶等应用。 • 环境监控与管理:集成到监控系统中,用于实时检测公共区域的垃圾堆积,辅助环境清洁和治理决策。 • 计算机视觉研究:支持实例分割算法的研究和优化,特别是在垃圾识别领域,促进AI在环保方面的创新。 • 教育与实践:可用于高校或培训机构的AI课程,作为实例分割技术的实践数据集,帮助学生理解计算机视觉应用。 三、数据集优势 • 精确的实例分割标注:每个垃圾实例都使用详细的多边形点进行标注,确保分割边界准确,提升模型训练效果。 • 数据多样性:包含多种垃圾物品实例,覆盖不同场景,增强模型的泛化能力和鲁棒性。 • 格式兼容性强:YOLO标注格式易于与主流深度学习框架集成,如YOLO系列、PyTorch等,方便研究人员和开发者使用。 • 实际应用价值:直接针对现实世界的垃圾管理需求,为自动化环保解决方案提供可靠数据支持,具有重要的社会意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值