Codeforces 148D(简单,概率DP)

本文介绍了一种使用概率动态规划解决黑白球胜利概率问题的方法。通过递推方程计算在剩余i个白球和j个黑球时的胜率,并给出完整的C++代码实现。

2015-04-22 01:54:59

思路:

  概率dp水题... 被 vj 翻译过来的中文坑惨了... (竟然是错的QAQ)

  dp[i][j]表示尚有 i 个白,j 个黑的胜率,递推方程很水。

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <cstdlib>
 4 #include <cmath>
 5 #include <vector>
 6 #include <map>
 7 #include <set>
 8 #include <stack>
 9 #include <queue>
10 #include <string>
11 #include <iostream>
12 #include <algorithm>
13 using namespace std;
14 
15 #define MEM(a,b) memset(a,b,sizeof(a))
16 #define REP(i,n) for(int i=0;i<(n);++i)
17 #define FOR(i,a,b) for(int i=(a);i<=(b);++i)
18 #define getmid(l,r) ((l) + ((r) - (l)) / 2)
19 #define MP(a,b) make_pair(a,b)
20 
21 typedef long long ll;
22 typedef pair<int,int> pii;
23 const int INF = (1 << 30) - 1;
24 const int MAXN = 1010;
25 
26 int w,b;
27 double dp[MAXN][MAXN];
28 
29 int main(){
30     scanf("%d%d",&w,&b);
31     for(int i = 1; i <= w; ++i)
32         dp[i][0] = 1.0;
33     for(int i = 1; i <= w; ++i){
34         for(int j = 0; j <= b; ++j){
35             dp[i][j] = 1.0*i/(i+j);
36             if(i&&j>1) dp[i][j] += dp[i-1][j-2]*i*j*(j-1)/(i+j)/(i+j-1)/(i+j-2);
37             if(j>2) dp[i][j] += dp[i][j-3]*j*(j-1)*(j-2)/(i+j)/(i+j-1)/(i+j-2);
38         }
39     }
40     printf("%.12f\n",dp[w][b]);
41     return 0;
42 }

 

转载于:https://www.cnblogs.com/naturepengchen/articles/4446120.html

区间DP是一种动态规划的方法,用于解决区间范围内的问题。在Codeforces竞赛中,区间DP经常被用于解决一些复杂的字符串或序列相关的问题。 在区间DP中,dp[i][j]表示第一个序列前i个元素和第二个序列前j个元素的最优解。具体的转移方程会根据具体的问题而变化,但是通常会涉及到比较两个序列的元素是否相等,然后根据不同的情况进行状态转移。 对于区间长度为1的情况,可以先进行初始化,然后再通过枚举区间长度和区间左端点,计算出dp[i][j]的值。 以下是一个示例代码,展示了如何使用区间DP来解决一个字符串匹配的问题: #include <cstdio> #include <cstring> #include <string> #include <iostream> #include <algorithm> using namespace std; const int maxn=510; const int inf=0x3f3f3f3f; int n,dp[maxn][maxn]; char s[maxn]; int main() { scanf("%d", &n); scanf("%s", s + 1); for(int i = 1; i <= n; i++) dp[i][i] = 1; for(int i = 1; i <= n; i++) { if(s[i] == s[i - 1]) dp[i][i - 1] = 1; else dp[i][i - 1] = 2; } for(int len = 3; len <= n; len++) { int r; for(int l = 1; l + len - 1 <= n; l++) { r = l + len - 1; dp[l][r] = inf; if(s[l] == s[r]) dp[l][r] = min(dp[l + 1][r], dp[l][r - 1]); else { for(int k = l; k <= r; k++) { dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r]); } } } } printf("%d\n", dp[n]); return 0; } 希望这个例子能帮助你理解区间DP的基本思想和应用方法。如果你还有其他问题,请随时提问。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值