CodeForces 148D 概率dp

探讨了公主与龙通过概率DP算法决定新年夜活动的故事背景。在一个装有白鼠和黑鼠的袋子中,公主与龙轮流抽取,首先抽到白鼠者获胜。文章详细解析了这一过程的概率DP实现,包括状态转移方程的设计和实现细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The dragon and the princess are arguing about what to do on the New Year’s Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn’t scare other mice). Princess draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input
The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output
Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed 10 - 9.

就是个简单的概率dp…
模拟着做做就过了…..
主要这种浮点数过不了要换编译器试试

#include<iostream>
#include<cmath>
#include<memory.h>
#include<algorithm>
#include<cstdio>
using namespace std;
double dp[1010][1010];
int main()
{
    int w,b;
    cin>>w>>b;
    if(w==0)
    {
        printf("%.10f\n",0);
        return 0;
    }
    for(int a=0;a<=w;a++)
    {
        for(int c=0;c<=b;c++)
        {
            if(c==0)
            {
                dp[a][c]=1;
                continue;
            }
            if(a==0)continue;
            dp[a][c]=1.0*a/(a+c)*1.0;
            if(c==2)
            {
                dp[a][c]+=1.0*(c*1.0/(a+c))*((c-1)*1.0/(a+c-1)*1.0)*dp[a-1][c-2];
                continue;
            }
            else if(c>=3)
            {
                dp[a][c]+=1.0*(c*1.0/(a+c)*1.0)*((c-1)*1.0/(a+c-1)*1.0)*((a*1.0*dp[a-1][c-2]*1.0+(c-2)*dp[a][c-3]*1.0)/(1.0*(a+c-2)*1.0));
                continue;
            }
        }
    }
    printf("%.10f\n",dp[w][b]);
    return 0;
}
区间DP是一种动态规划的方法,用于解决区间范围内的问题。在Codeforces竞赛中,区间DP经常被用于解决一些复杂的字符串或序列相关的问题。 在区间DP中,dp[i][j]表示第一个序列前i个元素和第二个序列前j个元素的最优解。具体的转移方程会根据具体的问题而变化,但是通常会涉及到比较两个序列的元素是否相等,然后根据不同的情况进行状态转移。 对于区间长度为1的情况,可以先进行初始化,然后再通过枚举区间长度和区间左端点,计算出dp[i][j]的值。 以下是一个示例代码,展示了如何使用区间DP来解决一个字符串匹配的问题: #include <cstdio> #include <cstring> #include <string> #include <iostream> #include <algorithm> using namespace std; const int maxn=510; const int inf=0x3f3f3f3f; int n,dp[maxn][maxn]; char s[maxn]; int main() { scanf("%d", &n); scanf("%s", s + 1); for(int i = 1; i <= n; i++) dp[i][i] = 1; for(int i = 1; i <= n; i++) { if(s[i] == s[i - 1]) dp[i][i - 1] = 1; else dp[i][i - 1] = 2; } for(int len = 3; len <= n; len++) { int r; for(int l = 1; l + len - 1 <= n; l++) { r = l + len - 1; dp[l][r] = inf; if(s[l] == s[r]) dp[l][r] = min(dp[l + 1][r], dp[l][r - 1]); else { for(int k = l; k <= r; k++) { dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r]); } } } } printf("%d\n", dp[n]); return 0; } 希望这个例子能帮助你理解区间DP的基本思想和应用方法。如果你还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值