Uva--10098 (next_permutation)

本文介绍了一个简单的C++程序,用于生成输入字符串的所有可能排列。通过使用标准库函数`next_permutation`实现字符串的全排列输出,并对每种排列进行打印。此算法适用于面试准备和技术笔试等场景。

2014-07-10 02:18:43

题意&思路:不说啥了。。

 1 #include <cstdio>
 2 #include <iostream>
 3 #include <cstring>
 4 #include <cmath>
 5 #include <algorithm>
 6 using namespace std;
 7 
 8 int main(){
 9     char s[15];
10     int n,len;
11     cin >> n;
12     while(n--){
13         cin >> s;
14         len = strlen(s);
15         sort(s,s + len);
16         cout << s << endl;
17         while(next_permutation(s,s + len)) cout << s << endl;
18         cout << endl;
19     }
20     return 0;
21 }

 

转载于:https://www.cnblogs.com/naturepengchen/articles/3834934.html

用pytorch跑项目显示usage: run.py [-h] --task_name TASK_NAME --is_training IS_TRAINING --model_id MODEL_ID --model MODEL --data DATA [--root_path ROOT_PATH] [--data_path DATA_PATH] [--features FEATURES] [--target TARGET] [--freq FREQ] [--checkpoints CHECKPOINTS] [--seq_len SEQ_LEN] [--label_len LABEL_LEN] [--pred_len PRED_LEN] [--seasonal_patterns SEASONAL_PATTERNS] [--inverse] [--mask_rate MASK_RATE] [--anomaly_ratio ANOMALY_RATIO] [--expand EXPAND] [--d_conv D_CONV] [--top_k TOP_K] [--num_kernels NUM_KERNELS] [--enc_in ENC_IN] [--dec_in DEC_IN] [--c_out C_OUT] [--d_model D_MODEL] [--n_heads N_HEADS] [--e_layers E_LAYERS] [--d_layers D_LAYERS] [--d_ff D_FF] [--moving_avg MOVING_AVG] [--factor FACTOR] [--distil] [--dropout DROPOUT] [--embed EMBED] [--activation ACTIVATION] [--channel_independence CHANNEL_INDEPENDENCE] [--decomp_method DECOMP_METHOD] [--use_norm USE_NORM] [--down_sampling_layers DOWN_SAMPLING_LAYERS] [--down_sampling_window DOWN_SAMPLING_WINDOW] [--down_sampling_method DOWN_SAMPLING_METHOD] [--seg_len SEG_LEN] [--num_workers NUM_WORKERS] [--itr ITR] [--train_epochs TRAIN_EPOCHS] [--batch_size BATCH_SIZE] [--patience PATIENCE] [--learning_rate LEARNING_RATE] [--des DES] [--loss LOSS] [--lradj LRADJ] [--use_amp] [--use_gpu USE_GPU] [--gpu GPU] [--use_multi_gpu] [--devices DEVICES] [--p_hidden_dims P_HIDDEN_DIMS [P_HIDDEN_DIMS ...]] [--p_hidden_layers P_HIDDEN_LAYERS] [--use_dtw USE_DTW] [--augmentation_ratio AUGMENTATION_RATIO] [--seed SEED] [--jitter] [--scaling] [--permutation] [--randompermutation] [--magwarp] [--timewarp] [--windowslice] [--windowwarp] [--rotation] [--spawner] [--dtwwarp] [--shapedtwwarp] [--wdba] [--discdtw] [--discsdtw] [--extra_tag EXTRA_TAG] run.py: error: the following arguments are required: --task_name, --is_training, --model_id, --model, --data 该怎么办
最新发布
05-29
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值