Query on a tree I

本文介绍了一种解决树形结构中边权最大值查询及更新问题的高效算法——树链剖分。通过预处理建立数据结构,实现路径上边权的最大值快速查询与更新操作。

You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1.
We will ask you to perfrom some instructions of the following form:
CHANGE i ti : change the cost of the i-th edge to ti
or
QUERY a b : ask for the maximum edge cost on the path from node a to node b

Input

The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow.
For each test case:
In the first line there is an integer N (N <= 10000),
In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 1000000),
The next lines contain instructions "CHANGE i ti" or "QUERY a b",
The end of each test case is signified by the string "DONE".
There is one blank line between successive tests.

Output

For each "QUERY" operation, write one integer representing its result.

Example

Input:

1
3
1 2 1
2 3 2
QUERY 1 2
CHANGE 1 3
QUERY 1 2
DONE

Output:

1
3

Solution

树链剖分裸体
md 我一开始看成了加和 打了树上差分 过了样例
被cxy一语点醒
顿时 世界都黑了 mmpmmp

#include <bits/stdc++.h>
using namespace std;
#define maxn (int)(1e5+10)
#define LL long long
pair<int,int>mp[maxn];

inline int read(){
    int rtn=0,f=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
    while(isdigit(ch))rtn=(rtn<<1)+(rtn<<3)+ch-'0',ch=getchar();
    return rtn*f;
}

int cnt,n,coc,m,p[maxn],size[maxn],son[maxn],dfn[maxn],top[maxn],dep[maxn],id[maxn],fa[maxn],w[maxn];

struct node{
    int a,b,nt,w;
}e[maxn<<1];

inline void add(int x,int y,int z){
    e[++cnt].a=x;e[cnt].b=y;e[cnt].w=z;
    e[cnt].nt=p[x];p[x]=cnt;
}

inline void dfs1(int k){
    size[k]=1;
    for(int i=p[k];i;i=e[i].nt){
        int kk=e[i].b;
        if(kk==fa[k])continue;
        fa[kk]=k;
        dep[kk]=dep[k]+1;
        w[kk]=e[i].w;
        dfs1(kk);
        size[k]+=size[kk];
        if(size[kk]>size[son[k]])son[k]=kk;
    }
}

inline void dfs2(int x,int y){
    top[x]=y;dfn[x]=++coc;id[coc]=x;
    if(!son[x])return;
    dfs2(son[x],y);
    for(int i=p[x];i;i=e[i].nt){
        int k=e[i].b;
        if(k==fa[x]||k==son[x])continue;
        dfs2(k,k);
    }
}

namespace Link_Chain_SegmentTree{
    LL maxv[maxn<<3];
    inline void build(int p,int l,int r){
        if(l==r)return (void)(maxv[p]=w[id[l]]);
        int mid=l+r>>1;
        build(p<<1,l,mid);
        build(p<<1|1,mid+1,r);
        maxv[p]=max(maxv[p<<1],maxv[p<<1|1]);
    }
    inline LL query(int p,int lp,int rp,int l,int r){
        if(l>r)return 0;
        if(l==lp&&r==rp)return maxv[p];
        int mid=lp+rp>>1;
        if(r<=mid)return query(p<<1,lp,mid,l,r);
        else if(l>mid)return query(p<<1|1,mid+1,rp,l,r);
        else return max(query(p<<1,lp,mid,l,mid),query(p<<1|1,mid+1,rp,mid+1,r));
    }
    inline LL query_chain(int x,int y){
        LL rtn=0;
        while(top[x]!=top[y]){
            if(dep[top[x]]<dep[top[y]])swap(x,y);
            rtn=max(rtn,query(1,1,n,dfn[top[x]],dfn[x]));
            x=fa[top[x]]; 
        }if(dep[x]>dep[y])swap(x,y);
        return max(rtn,query(1,1,n,dfn[x]+1,dfn[y]));
    }
    inline void update(int p,int lp,int rp,int pos,LL val){
        if(lp>rp)return;
        if(lp==rp)return (void)(maxv[p]=val);
        int mid=lp+rp>>1;
        if(pos<=mid)update(p<<1,lp,mid,pos,val);
        else update(p<<1|1,mid+1,rp,pos,val);
        maxv[p]=max(maxv[p<<1],maxv[p<<1|1]);
    }
    inline void update_chain(int id, LL val){
        int from=mp[id].first,to=mp[id].second;
        if(dep[from]>dep[to])update(1,1,n,dfn[from],val);
        else update(1,1,n,dfn[to],val);
    }
}using namespace Link_Chain_SegmentTree;

int main(){
    int T;scanf("%d",&T);
    while(T--){
        n;scanf("%d",&n);coc=0;
        memset(p,0,sizeof(p));
        memset(fa,0,sizeof(fa));
        memset(son,0,sizeof(son));
        for(int i=1;i<n;i++){
            mp[i].first=read();mp[i].second=read();int w=read();
            add(mp[i].first,mp[i].second,w); 
            add(mp[i].second,mp[i].first,w); 
        }
        dfs1(1);dfs2(1,1) ;
        build(1,1,n);
        while(true){
            char ch[10];scanf("%s",ch);
            if(ch[0]=='D')break;
            int x=read(),y=read();
            if(ch[0]=='Q')printf("%lld\n",query_chain(x,y));
            if(ch[0]=='C')update_chain(x,y);
        }
    }
    return 0;
}
/*
1
10
2 1 6824
3 1 21321
4 2 26758
5 1 13610
6 4 19133
7 4 20483
8 7 10438
9 8 19157
10 6 25677
C 2 11799
Q 5 6
Q 6 10
Q 3 1
C 5 9242
C 3 15761
C 2 28270
C 8 8177
C 5 21007
Q 4 8
D
*/ 

转载于:https://www.cnblogs.com/DexterYsw/p/7942151.html

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值