TrainOptions函数用处如下:
options = trainingOptions(solverName)
options = trainingOptions(solverName,Name,Value)
options = trainingOptions('sgdm',...
'LearnRateSchedule','piecewise',...
'LearnRateDropFactor',0.2,...
'LearnRateDropPeriod',5,...
'MaxEpochs',20,...
'MiniBatchSize',64,...
'Plots','training-progress')
具体可以点击网页
而损失函数的用处是和最后一层名字相关 原文说明如下:
Training loss, smoothed training loss, and validation loss — The loss on each mini-batch, its smoothed version, and the loss on the validation set, respectively. If the final layer of your network is a classificationLayer, then the loss function is the cross entropy loss. For more information about loss functions for classification and regression problems, see Output Layers.
所以说 所有网络中最后有一层是classificationLayer的 都是使用cross entropy交叉熵函数作为损失函数的。
训练选项与损失函数详解
本文介绍了MATLAB中训练神经网络的TrainOptions函数及其参数设置方法,并解释了当网络的最后一层为分类层时如何自动使用交叉熵作为损失函数。
1111

被折叠的 条评论
为什么被折叠?



