大家好,今天和各位讲解一下深度强化学习中的基础模型 DQN,配合 OpenAI 的 gym 环境,训练模型完成一个小游戏,完整代码可以从我的 GitHub 中获得:
https://github.com/LiSir-HIT/Reinforcement-Learning/tree/main/Model
1. 算法原理
1.1 基本原理
DQN(Deep Q Network)算法由 DeepMind 团队提出,是深度神经网络和 Q-Learning 算法相结合的一种基于价值的深度强化学习算法。
Q-Learning 算法构建了一个状态-动作值的 Q 表,其维度为 (s,a),其中 s 是状态的数量,a 是动作的数量,根本上是 Q 表将状态和动作映射到 Q 值。此算法适用于状态数量能够计算的场景。但是在实际场景中,状态的数量可能很大,这使得构建 Q 表难以解决。为破除这一限制,我们使用 Q 函数来代替 Q 表的作用,后者将状态和动作映射到 Q 值的结果相同。
由于神经网络擅长对复杂函数进行建模,因此我们用其当作函数近似器来估计此 Q 函数,这就是 Deep Q Networks。此网络将状态映射到可从该状态执行的所有动作的 Q 值。即只要输入一个状态,网络就会输出当前可执行的所有动作分别对应的 Q 值。如下图所示,它学习网络的权重,以此输出最佳 Q 值。
1.2 模型结构
DQN 体系结构主要包含:Q 网络、目标网络,以及经验回放组件。.Q 网络是经过训练以生成最佳状态-动作值的 agent。经验回放单元的作用是与环境交互,生成数据以训练 Q 网络。目标网络与 Q 网络在初始时是完全相同的。DQN 工作流程图如下
1.2.1 经验回放
经验回放从当前状态中以贪婪策略 选择一个动作,执行后从环境中获得奖励和下一步的状态,如下图所示。
然后将此观测值另存为用于训练数据的样本,如下图所示。