人脸光照处理的理想状态是,在不损失图像内容的前提下,保持图像在各种环境下的图像光照一致。而像之前提到过的Gabor虽然能保持较好的光照统一性,但会造成一部分的低频信息丢失,另外的DCT变换,不能很好适应环境光的变化。所以,在实际使用中,往往不能把光照处理的压力都放在后期算法处理上,在摄像头采集时就需要对环境光做一定的过滤。比如近红外图像,采集时去除大多可见光对图像内容的影响,在此基础上再进行软件处理,往往能达到生产上的要求。
1 传统Gamma校正及改进
传统Gamma校正算法具有较好的光照调整效果,但是由于其容易造成校正过度的原因,因而使用范围受到限制。正如图1和2所示,Gamma函数容易对图像灰度比较“正常”的区域也做了调整,会产生失真的想象。
图1 传统Gamma校正曲线 图2 经传统Gamma函数校正后的灰度分布
传统方法只是简单的将低灰度区域调高,高灰度区域调低,调节方式过于简单。
改进后的校正曲线和灰度分部曲线: