faster rcnn 的重新训练

本文介绍如何安装并使用Faster R-CNN进行目标检测模型的训练与测试,包括下载数据集、预训练模型及配置环境等步骤。

Beyond the demo: installation for training and testing models

  1. Download the training, validation, test data and VOCdevkit

    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar
  2. Extract all of these tars into one directory named VOCdevkit

    tar xvf VOCtrainval_06-Nov-2007.tar
    tar xvf VOCtest_06-Nov-2007.tar
    tar xvf VOCdevkit_08-Jun-2007.tar
  3. It should have this basic structure

    $VOCdevkit/                           # development kit
    $VOCdevkit/VOCcode/                   # VOC utility code
    $VOCdevkit/VOC2007                    # image sets, annotations, etc.
    # ... and several other directories ...
  4. Create symlinks for the PASCAL VOC dataset

    cd $FRCN_ROOT/data #这里需要注意,$VOCdevkit代表路径变量,若echo $VOCdevkit为空则不能成功   
    ln -s $VOCdevkit VOCdevkit2007 #因此要先设置临时路径变量VOCdevkit=../VOCdevkit,因为我VOCdevkit目录在$FRCN_ROOT下

    Using symlinks is a good idea because you will likely want to share the same PASCAL dataset installation between multiple projects.

  5. [Optional] follow similar steps to get PASCAL VOC 2010 and 2012
  6. [Optional] If you want to use COCO, please see some notes under data/README.md
  7. Follow the next sections to download pre-trained ImageNet models

Download pre-trained ImageNet models

Pre-trained ImageNet models can be downloaded for the three networks described in the paper: ZF and VGG16.

cd $FRCN_ROOT
./data/scripts/fetch_imagenet_models.sh

VGG16 comes from the Caffe Model Zoo, but is provided here for your convenience. ZF was trained at MSRA.

Usage

To train and test a Faster R-CNN detector using the alternating optimization algorithm from our NIPS 2015 paper, useexperiments/scripts/faster_rcnn_alt_opt.sh. Output is written underneath $FRCN_ROOT/output.

cd $FRCN_ROOT
./experiments/scripts/faster_rcnn_alt_opt.sh [GPU_ID] [NET] [--set ...]
# GPU_ID is the GPU you want to train on
# NET in {ZF, VGG_CNN_M_1024, VGG16} is the network arch to use
# --set ... allows you to specify fast_rcnn.config options, e.g.
#   --set EXP_DIR seed_rng1701 RNG_SEED 1701

("alt opt" refers to the alternating optimization training algorithm described in the NIPS paper.)

To train and test a Faster R-CNN detector using the approximate joint training method, useexperiments/scripts/faster_rcnn_end2end.sh. Output is written underneath $FRCN_ROOT/output.

cd $FRCN_ROOT
./experiments/scripts/faster_rcnn_end2end.sh [GPU_ID] [NET] [--set ...]
# GPU_ID is the GPU you want to train on
# NET in {ZF, VGG_CNN_M_1024, VGG16} is the network arch to use
# --set ... allows you to specify fast_rcnn.config options, e.g.
#   --set EXP_DIR seed_rng1701 RNG_SEED 1701

This method trains the RPN module jointly with the Fast R-CNN network, rather than alternating between training the two. It results in faster (~ 1.5x speedup) training times and similar detection accuracy. See these slides for more details.

Artifacts generated by the scripts in tools are written in this directory.

Trained Fast R-CNN networks are saved under:

output/<experiment directory>/<dataset name>/

Test outputs are saved under:

output/<experiment directory>/<dataset name>/<network snapshot name>/
### Faster R-CNN 预训练模型下载与使用教程 Faster R-CNN 是一种高效的目标检测算法,其核心在于引入区域提议网络(Region Proposal Network, RPN),从而显著提升了目标检测的速度和精度。以下是关于如何获取并使用 Faster R-CNN 的预训练模型的相关说明。 #### 1. PyTorch 官方预训练模型 PyTorch 提供了官方支持的 Faster R-CNN 预训练模型,可以直接用于目标检测任务。这些模型通常是在 COCO 数据集上进行预训练的,能够很好地泛化到其他数据集或场景中[^2]。 ##### 下载方式 可以通过 `torchvision` 库中的 `models.detection.faster_rcnn` 模块加载预训练模型。具体代码如下: ```python import torchvision.models as models # 加载预训练Faster R-CNN 模型 (ResNet-50 backbone) model = models.detection.fasterrcnn_resnet50_fpn(pretrained=True) # 将模型设置为评估模式 model.eval() ``` 上述代码会自动从 Torch Hub 下载预训练权重,并构建带有 ResNet-50 主干网的 Faster R-CNN 模型。 #### 2. TensorFlow/Keras 预训练模型 TensorFlow 同样提供了 Faster R-CNN 的预训练模型。可以借助 TensorFlow Model Garden 或者 TF-Hub 获取相关资源。 ##### 下载方式 以下是一个简单的示例,展示如何通过 TensorFlow Object Detection API 加载预训练模型: ```python from object_detection.utils import config_util from object_detection.protos import pipeline_pb2 from google.protobuf import text_format # 导入配置文件路径 pipeline_config_path = 'path/to/faster_rcnn_model/pipeline.config' configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) # 创建模型对象 detection_model = model_builder.build(model_config=configs['model'], is_training=False) # 加载检查点 ckpt_path = 'path/to/checkpoint/ckpt-0' ckpt = tf.compat.v2.train.Checkpoint(model=detection_model) ckpt.restore(ckpt_path).expect_partial() ``` 注意:需要提前下载对应的 `.config` 文件和检查点文件(`.ckpt`)。可以从 TensorFlow Model Zoo 中找到所需的 Faster R-CNN 模型及其配套资源[^4]。 #### 3. MATLAB 实现 对于 MATLAB 用户而言,MathWorks 提供了一个完整的 Faster R-CNN 工具箱,允许快速搭建和测试目标检测模型。启动项目时需执行以下命令来完成环境初始化: ```matlab run('startup.m'); faster_rcnn_build; ``` 随后可以根据需求调整配置文件(如 `faster_rcnn_trainOptions.mat` 和 `faster_rcnn_detectOptions.mat`),并通过指定路径加载已有的预训练权重。 --- ### 注意事项 - **硬件要求**:由于 Faster R-CNN 属于计算密集型模型,在实际应用过程中推荐使用 GPU 来加速推理过程。 - **自定义数据集适配**:如果计划将该模型应用于特定领域,则可能需要重新标注数据并对最后一层分类器部分进行微调操作[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值