#!/usr/bin/env python
# coding: utf-8
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
import time
# 生成城市坐标
def gen_city(filename, city_num):
name = ["city's name"] * city_num # 这个并没什么用,但是不要省,省了的话还要修改代码
x = [np.random.randint(0, 100) for _ in range(city_num)]
y = [np.random.randint(0, 100) for _ in range(city_num)]
x[0] = 0
y[0] = 0
with open(filename, "w") as f:
for i in range(city_num):
name[i] = f'city{i}'
f.write(name[i] + "," + str(x[i]) + "," + str(y[i]) + "\n")
f.write(name[0] + "," + str(x[0]) + "," + str(y[0]) + "\n") # 最后一个节点即为起点
# 打印城市的坐标
position = pd.read_csv("cities.csv", names=['ind', 'lat', 'lon'])
plt.scatter(x=position['lon'], y=position['lat'])
plt.show()
position.head()
def create_init_list(filename):
data = pd.read_csv(filename, names=['index', 'lat', 'lon']) # lat->纬度 lon->经度
data_list = []
for i in range(len(data)):
data_list.append([float(data.iloc[i]['lon']), float(data.iloc[i]['lat'])])
return data_list
def distance_matrix(coordinate_list, size): # 生成距离矩阵,邻接矩阵
d = np.zeros((size + 2, size + 2))
for i in range(size + 1):
x1 = coordinate_list[i][0]
y1 = coordinate_list[i][1]
for j in range(size + 1):
if (i == j) or (d[i][j] != 0):
continue
x2 = coordinate_list[j][0]
y2 = coordinate_list[j][1]
distance = np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
if (i == 0): # 起点与终点是同一城市
d[i][j] = d[j][i] = d[size + 1][j] = d[j][size + 1] = distance
else:
d[i][j] = d[j][i] = distance
return d
def path_length(d_matrix, path_list, size): # 计算路径长度
length = 0
for i in range(size + 1):
length += d_matrix[path_list[i]][path_list[i + 1]]
return length
def shuffle(my_list): # 起点和终点不能打乱
temp_list = my_list[1:-1]
np.random.shuffle(temp_list)
shuffle_list = my_list[:1] + temp_list + my_list[-1:]
return shuffle_list
def product_len_probability(my_list, d_matrix, size, p_num): # population, d, size,p_num
len_list = [] # 种群中每个个体(路径)的路径长度
pro_list = []
path_len_pro = []
for path in my_list:
len_list.append(path_length(d_matrix, path, size))
max_len = max(len_list) + 1e-10
gen_best_length = min(len_list) # 种群中最优路径的长度
gen_best_length_index = len_list.index(gen_best_length) # 最优个体在种群中的索引
# 使用最长路径减去每个路径的长度,得到每条路径与最长路径的差值,该值越大说明路径越小
mask_list = np.ones(p_num) * max_len - np.array(len_list)
sum_len = np.sum(mask_list) # mask_list列表元素的和
for i in range(p_num):
if (i == 0):
pro_list.append(mask_list[i] / sum_len)
elif (i == p_num - 1):
pro_list.append(1)
else:
pro_list.append(pro_list[i - 1] + mask_list[i] / sum_len)
for i in range(p_num):
# 路径列表 路径长度 概率
path_len_pro.append([my_list[i], len_list[i], pro_list[i]])
# 返回 最优路径 最优路径的长度 每条路径的概率
return my_list[gen_best_length_index], gen_best_length, path_len_pro
def choose_cross(population, p_num): # 随机产生交配者的索引,越优的染色体被选择几率越大
jump = np.random.random() # 随机生成0-1之间的小数
if jump < population[0][2]:
return 0
low = 1
high = p_num
mid = int((low + high) / 2)
# 二分搜索
# 如果jump在population[mid][2]和population[mid-1][2]之间,那么返回mid
while (low < high):
if jump > population[mid][2]:
low = mid
mid = (low + high) // 2
elif jump < population[mid - 1][2]: # 注意这里一定是mid-1
high = mid
mid = (low + high) // 2
else:
return mid
def product_offspring(size, parent_1, parent_2, pm): # 产生后代
son = parent_1.copy()
product_set = np.random.randint(1, size + 1)
parent_cross_set = set(parent_2[1:product_set]) # 交叉序列集合
cross_complete = 1
for j in range(1, size + 1):
if son[j] in parent_cross_set:
son[j] = parent_2[cross_complete]
cross_complete += 1
if cross_complete > product_set:
break
if np.random.random() < pm: # 变异
son = veriation(son, size, pm)
return son
def veriation(my_list, size, pm): # 变异,随机调换两城市位置
ver_1 = np.random.randint(1, size + 1)
ver_2 = np.random.randint(1, size + 1)
while ver_2 == ver_1: # 直到ver_2与ver_1不同
ver_2 = np.random.randint(1, size + 1)
my_list[ver_1], my_list[ver_2] = my_list[ver_2], my_list[ver_1]
return my_list
def main(filepath, p_num, gen, pm):
start = time.time()
coordinate_list = create_init_list(filepath)
size = len(coordinate_list) - 2 # 除去了起点和终点
d = distance_matrix(coordinate_list, size) # 各城市之间的邻接矩阵
path_list = list(range(size + 2)) # 初始路径
# 随机打乱初始路径以建立初始种群路径
population = [shuffle(path_list) for i in range(p_num)]
# 初始种群population以及它的最优路径和最短长度
gen_best, gen_best_length, population = product_len_probability(population, d, size, p_num)
# 现在的population中每一元素有三项,第一项是路径,第二项是长度,第三项是使用时转盘的概率
son_list = [0] * p_num # 后代列表
best_path = gen_best # 最好路径初始化
best_path_length = gen_best_length # 最好路径长度初始化
every_gen_best = [gen_best_length] # 每一代的最优值
for i in range(gen): # 迭代gen代
son_num = 0
while son_num < p_num: # 循环产生后代,一组父母亲产生两个后代
father_index = choose_cross(population, p_num) # 获得父母索引
mother_index = choose_cross(population, p_num)
father = population[father_index][0] # 获得父母的染色体
mother = population[mother_index][0]
son_list[son_num] = product_offspring(size, father, mother, pm) # 产生后代加入到后代列表中
son_num += 1
if son_num == p_num:
break
son_list[son_num] = product_offspring(size, mother, father, pm) # 产生后代加入到后代列表中
son_num += 1
# 在新一代个体中找到最优路径和最优值
gen_best, gen_best_length, population = product_len_probability(son_list, d, size, p_num)
if (gen_best_length < best_path_length): # 这一代的最优值比有史以来的最优值更优
best_path = gen_best
best_path_length = gen_best_length
every_gen_best.append(gen_best_length)
end = time.time()
print(f"迭代用时:{(end - start)}s")
print("史上最优路径:", best_path, sep=" ") # 史上最优路径
print("史上最短路径长度:", best_path_length, sep=" ") # 史上最优路径长度
# 打印各代最优值和最优路径
x = [coordinate_list[point][0] for point in best_path] # 最优路径各节点经度
y = [coordinate_list[point][1] for point in best_path] # 最优路径各节点纬度
plt.figure(figsize=(8, 10))
plt.subplot(211)
plt.plot(every_gen_best) # 画每一代中最优路径的路径长度
plt.subplot(212)
plt.scatter(x, y) # 画点
plt.plot(x, y) # 画点之间的连线
plt.grid() # 给画布添加网格
plt.show()
if __name__ == '__main__':
city_num = 10 # 城市数量
filepath = 'cities.csv'
# gen_city(filepath, city_num)
p_num = 100 # 种群个体数量
gen = 1000 # 进化代数
pm = 0.4 # 变异率
main(filepath, p_num, gen, pm)
遗传算法(GA) - 求解 - 旅行商问题(TSP)
最新推荐文章于 2023-03-23 19:16:09 发布