STM32学习笔记——5个串口的使用方法

本文详细介绍了STM32F103系列单片机中5个串口的配置方法,包括I/O口配置、串口参数配置及中断向量配置,并提供了完整的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

串口是我们常用的一个数据传输接口,STM32F103系列单片机共有5个串口,其中1-3是通用同步/异步串行接口USART(Universal Synchronous/Asynchronous Receiver/Transmitter),4,、5是通用异步串行接口UART(Universal Asynchronous Receiver/Transmitter)。

配置串口包括三部分内容: 
1. I/O口配置:TXD配置为复用推挽输出(GPIO_Mode_AF_PP),RXD配置为浮空输入(GPIO_Mode_IN_FLOATING); 
2. 串口配置:波特率等; 
3. 中断向量配置:一般用中断方式接收数据。

注意事项: 
1. USART1是挂在APB2,使能时钟命令为: 
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE ); 
其他几个则挂在APB1上,如2口: 
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE );

  1. 配置4口和5口的时候,中断名为UART4、UART5,中断入口分别为 
    UART4_IRQn、UART5_IRQn 
    对应的中断服务函数为 
    void UART4_IRQHandler(void) 
    和 
    void UART5_IRQHandler(void)。

下面是5个串口的配置函数和收发数据函数代码:

#include "stm32f10x.h"
#include "misc.h"
#include "stm32f10x_gpio.h"
#include "stm32f10x_usart.h" 

void USART1_Configuration(void)
{
    GPIO_InitTypeDef GPIO_InitStructure;
    USART_InitTypeDef USART_InitStructure;
    NVIC_InitTypeDef NVIC_InitStructure;        

    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE );
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE );

    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //USART1 TX;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure); //端口A;

    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; //USART1 RX;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入;
    GPIO_Init(GPIOA, &GPIO_InitStructure); //端口A;

    USART_InitStructure.USART_BaudRate = 9600; //波特率;
    USART_InitStructure.USART_WordLength = USART_WordLength_8b; //数据位8位;
    USART_InitStructure.USART_StopBits = USART_StopBits_1; //停止位1位;
    USART_InitStructure.USART_Parity = USART_Parity_No ; //无校验位;
    USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
    //无硬件流控;
    USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
    //收发模式;
    USART_Init(USART1, &USART_InitStructure);//配置串口参数;

    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置中断组,4位抢占优先级,4位响应优先级;

    NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; //中断号;
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //抢占优先级;
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //响应优先级;
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
    NVIC_Init(&NVIC_InitStructure);

    USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);
    USART_Cmd(USART1, ENABLE); //使能串口;
}

void USART1_Send_Byte(u8 Data) //发送一个字节;
{
    USART_SendData(USART1,Data);
    while( USART_GetFlagStatus(USART1, USART_FLAG_TC) == RESET );
}

void USART1_Send_String(u8 *Data) //发送字符串;
{
    while(*Data)
    USART1_Send_Byte(*Data++);
}

void USART1_IRQHandler(void) //中断处理函数;
{
    u8 res;    
    if(USART_GetITStatus(USART1, USART_IT_RXNE) == SET) //判断是否发生中断;
    {
        USART_ClearFlag(USART1, USART_IT_RXNE); //清除标志位;
        res=USART_ReceiveData(USART1); //接收数据;
        USART1_Send_Byte(res); //用户自定义;
    }  
} 



void USART2_Configuration(void)
{
    GPIO_InitTypeDef GPIO_InitStructure;
    USART_InitTypeDef USART_InitStructure;
    NVIC_InitTypeDef NVIC_InitStructure;        

    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE );
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE );

    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; //USART2 TX;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure); //端口A;

    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3; //USART2 RX;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入;
    GPIO_Init(GPIOA, &GPIO_InitStructure); //端口A;

    USART_InitStructure.USART_BaudRate = 9600; //波特率;
    USART_InitStructure.USART_WordLength = USART_WordLength_8b; //数据位8位;
    USART_InitStructure.USART_StopBits = USART_StopBits_1; //停止位1位;
    USART_InitStructure.USART_Parity = USART_Parity_No ; //无校验位;
    USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
    //无硬件流控;
    USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
    //收发模式;
    USART_Init(USART2, &USART_InitStructure);//配置串口参数;

    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置中断组,4位抢占优先级,4位响应优先级;

    NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn; //中断号;
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //抢占优先级;
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //响应优先级;
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
    NVIC_Init(&NVIC_InitStructure);

    USART_ITConfig(USART2, USART_IT_RXNE, ENABLE);
    USART_Cmd(USART2, ENABLE); //使能串口;
}

void USART2_Send_Byte(u8 Data) //发送一个字节;
{
    USART_SendData(USART2,Data);
    while( USART_GetFlagStatus(USART2, USART_FLAG_TC) == RESET );
}

void USART2_Send_String(u8 *Data) //发送字符串;
{
    while(*Data)
    USART2_Send_Byte(*Data++);
}

void USART2_IRQHandler(void) //中断处理函数;
{
u8 res;    
    if(USART_GetITStatus(USART2, USART_IT_RXNE) == SET) //判断是否发生中断;
    {
        USART_ClearFlag(USART2, USART_IT_RXNE); //清除标志位;
        res=USART_ReceiveData(USART2); //接收数据;
        USART2_Send_Byte(res); //用户自定义;
    }  
} 



void USART3_Configuration(void)
{
    GPIO_InitTypeDef GPIO_InitStructure;
    USART_InitTypeDef USART_InitStructure;
    NVIC_InitTypeDef NVIC_InitStructure;        

    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE );
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE );

    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; //USART3 TX;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOB, &GPIO_InitStructure); //端口B;

    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11; //USART3 RX;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入;
    GPIO_Init(GPIOB, &GPIO_InitStructure); //端口B;

    USART_InitStructure.USART_BaudRate = 9600; //波特率;
    USART_InitStructure.USART_WordLength = USART_WordLength_8b; //数据位8位;
    USART_InitStructure.USART_StopBits = USART_StopBits_1; //停止位1位;
    USART_InitStructure.USART_Parity = USART_Parity_No ; //无校验位;
    USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
    //无硬件流控;
    USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
    //收发模式;
    USART_Init(USART3, &USART_InitStructure);//配置串口参数;

    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置中断组,4位抢占优先级,4位响应优先级;

    NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn; //中断号;
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //抢占优先级;
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //响应优先级;
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
    NVIC_Init(&NVIC_InitStructure);

    USART_ITConfig(USART3, USART_IT_RXNE, ENABLE);
    USART_Cmd(USART3, ENABLE); //使能串口;
}

void USART3_Send_Byte(u8 Data) //发送一个字节;
{
    USART_SendData(USART3,Data);
    while( USART_GetFlagStatus(USART3, USART_FLAG_TC) == RESET );
}

void USART3_Send_String(u8 *Data) //发送字符串;
{
while(*Data)
USART3_Send_Byte(*Data++);
}

void USART3_IRQHandler(void) //中断处理函数;
{
    u8 res;    
    if(USART_GetITStatus(USART3, USART_IT_RXNE) == SET) //判断是否发生中断;
    {
        USART_ClearFlag(USART3, USART_IT_RXNE); //清除标志位;
        res=USART_ReceiveData(USART3); //接收数据;
        USART3_Send_Byte(res); //用户自定义;
    }  
} 



void UART4_Configuration(void)
{
    GPIO_InitTypeDef GPIO_InitStructure;
    USART_InitTypeDef USART_InitStructure;
    NVIC_InitTypeDef NVIC_InitStructure;        

    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC, ENABLE );
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_UART4, ENABLE );

    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; //UART4 TX;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOC, &GPIO_InitStructure); //端口C;

    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11; //UART4 RX;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入;
    GPIO_Init(GPIOC, &GPIO_InitStructure); //端口C;

    USART_InitStructure.USART_BaudRate = 9600; //波特率;
    USART_InitStructure.USART_WordLength = USART_WordLength_8b; //数据位8位;
    USART_InitStructure.USART_StopBits = USART_StopBits_1; //停止位1位;
    USART_InitStructure.USART_Parity = USART_Parity_No ; //无校验位;
    USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
    //无硬件流控;
    USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
    //收发模式;
    USART_Init(UART4, &USART_InitStructure);//配置串口参数;

    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置中断组,4位抢占优先级,4位响应优先级;

    NVIC_InitStructure.NVIC_IRQChannel = UART4_IRQn; //中断号;
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //抢占优先级;
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //响应优先级;
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
    NVIC_Init(&NVIC_InitStructure);

    USART_ITConfig(UART4, USART_IT_RXNE, ENABLE);
    USART_Cmd(UART4, ENABLE); //使能串口;
}

void UART4_Send_Byte(u8 Data) //发送一个字节;
{
    USART_SendData(UART4,Data);
    while( USART_GetFlagStatus(UART4, USART_FLAG_TC) == RESET );
}

void UART4_Send_String(u8 *Data) //发送字符串;
{
    while(*Data)
    UART4_Send_Byte(*Data++);
}

void UART4_IRQHandler(void) //中断处理函数;
{
    u8 res;    
    if(USART_GetITStatus(UART4, USART_IT_RXNE) == SET) //判断是否发生中断;
    {
        USART_ClearFlag(UART4, USART_IT_RXNE); //清除标志位;
        res=USART_ReceiveData(UART4); //接收数据;
        UART4_Send_Byte(res); //用户自定义;
    }  
} 

void UART5_Configuration(void)
{
    GPIO_InitTypeDef GPIO_InitStructure;
    USART_InitTypeDef USART_InitStructure;
    NVIC_InitTypeDef NVIC_InitStructure;        

    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC|RCC_APB2Periph_GPIOD, ENABLE );
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_UART5, ENABLE );

    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12; //UART5 TX;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOC, &GPIO_InitStructure); //端口C;

    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; //UART5 RX;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入;
    GPIO_Init(GPIOD, &GPIO_InitStructure); //端口D;

    USART_InitStructure.USART_BaudRate = 9600; //波特率;
    USART_InitStructure.USART_WordLength = USART_WordLength_8b; //数据位8位;
    USART_InitStructure.USART_StopBits = USART_StopBits_1; //停止位1位;
    USART_InitStructure.USART_Parity = USART_Parity_No ; //无校验位;
    USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
    //无硬件流控;
    USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
    //收发模式;
    USART_Init(UART5, &USART_InitStructure);//配置串口参数;

    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置中断组,4位抢占优先级,4位响应优先级;

    NVIC_InitStructure.NVIC_IRQChannel = UART5_IRQn; //中断号;
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //抢占优先级;
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //响应优先级;
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
    NVIC_Init(&NVIC_InitStructure);

    USART_ITConfig(UART5, USART_IT_RXNE, ENABLE);
    USART_Cmd(UART5, ENABLE); //使能串口;
}

void UART5_Send_Byte(u8 Data) //发送一个字节;
{
    USART_SendData(UART5,Data);
    while( USART_GetFlagStatus(UART5, USART_FLAG_TC) == RESET );
}

void UART5_Send_String(u8 *Data) //发送字符串;
{
    while(*Data)
    UART5_Send_Byte(*Data++);
}

void UART5_IRQHandler(void) //中断处理函数;
{
u8 res;    
if(USART_GetITStatus(UART5, USART_IT_RXNE) == SET) //判断是否发生中断;
{
    USART_ClearFlag(UART5, USART_IT_RXNE); //清除标志位;
    res=USART_ReceiveData(UART5); //接收数据;
    UART5_Send_Byte(res); //用户自定义;
}  
} 
### 关于STM32的学习资源推荐 对于初学者而言,选择合适的入门材料至关重要。针对STM32的学习路径可以从最广泛使用的型号——STM32F103开始[^2]。这款微控制器在市场上拥有丰富的教程和支持文档,有助于新手快速上手。 #### 工具与环境搭建 使用STM32CubeIDE作为开发工具能极大提高编程效率,并简化外设初始化过程[^1]。通过这个集成开发环境(IDE),开发者不仅可以轻松创建工程项目,还能利用其内置的功能向导来配置硬件参数,减少手动编码的工作量。 #### 基础概念理解 了解ARM Cortex-M架构以及如何操作GPIO端口、定时器和其他基本外围设备是必要的基础知识。这些内容通常会在官方手册和技术参考中详细介绍。此外,网络上有许多免费视频课程和博客文章专门讲解这些问题。 #### 实践练习 理论学习之后应立即付诸实践。尝试构建简单的应用程序如LED闪烁或按键读取可以帮助巩固所学的知识点。随着技能的增长,可以逐步挑战更复杂的项目,例如串行通信协议实现或是传感器数据采集处理等任务。 #### 高级特性探索 当掌握了初步技巧后,可考虑转向更高阶的产品线如STM32U5系列来进行深入研究[^3]。这类芯片提供了更好的性能表现及更多样化的接口选项,同时也引入了一些新颖的技术特征(如图形加速),使得它们成为理想的选择用于高级课题的研究和发展工作。 ```python # 示例代码:点亮一个连接至PA5引脚的LED灯 import pyb led = pyb.LED(1) # 定义LED对象关联到蓝色LED (即PA5) while True: led.toggle() # 切换LED状态 pyb.delay(500) # 等待半秒 ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值