JUC的AQS的第一部分

部分摘抄自

https://www.cnblogs.com/daydaynobug/p/6752837.html

概述

以JUC locks包中的ReentrantLock为例,其内部有一个对象,并实现了该对象的类是ReentrantLock类中的一个内部类。这是JUC lock的典型实现。AbstractQueuedSynchronizer是设计模式中的模版方法,提供了典型的锁的行为。

private final Sync sync;
abstract static class Sync extends AbstractQueuedSynchronizer {
...
}

AbstractQueuedSynchronizer这个类虽然号称Abstract,但是已经拥有一个完整的锁的实现。

##CLH队列
多线程争用资源时会进入此队列
这里写图片描述

以ReentrantLock为例,state初始化为0,表示未锁定状态。A线程lock()时,会调用tryAcquire()独占该锁并将state+1。此后,其他线程再tryAcquire()时就会失败,直到A线程unlock()到state=0(即释放锁)为止,其它线程才有机会获取该锁。当然,释放锁之前,A线程自己是可以重复获取此锁的(state会累加),这就是可重入的概念。但要注意,获取多少次就要释放多么次,这样才能保证state是能回到零态的。

private volatile int state;

一个节点表示一个线程,它保存着线程的引用(thread)、状态(waitStatus)、前驱节点(prev)、后继节点(next)
NODE节点的代码段如下

        /**
         * Status field, taking on only the values:
         *   SIGNAL:     它的下一个节点接下来需要唤醒(unpack)的线程(-1)
         *   CANCELLED:  因为线程被中断或者等待超市,节点请求锁处于被取消状态。是节点的终态。(1)节点在处于CANCELLED状态时会被删除
         *               
         *   CONDITION:  This node is currently on a condition queue.
         *               It will not be used as a sync queue node
         *               until transferred, at which time the status
         *               will be set to 0. (Use of this value here has
         *               nothing to do with the other uses of the
         *               field, but simplifies mechanics.)(-1)
         *   PROPAGATE:  A releaseShared should be propagated to other
         *               nodes. This is set (for head node only) in
         *               doReleaseShared to ensure propagation
         *               continues, even if other operations have
         *               since intervened.(-3)
         *   0:          表示当前节点正等待在队列中
         *
         * The values are arranged numerically to simplify use.
         * Non-negative values mean that a node doesn't need to
         * signal. So, most code doesn't need to check for particular
         * values, just for sign.
         *
         * The field is initialized to 0 for normal sync nodes, and
         * CONDITION for condition nodes.  It is modified using CAS
         * (or when possible, unconditional volatile writes).
         */
        volatile int waitStatus;

CLH队列是一个双向队列。

AQS

AQS定义两种资源共享方式:Exclusive(独占,只有一个线程能执行,如ReentrantLock)和Share(共享,多个线程可同时执行,如Semaphore/CountDownLatch)。

sHeldExclusively()//该线程是否正在独占资源。只有用到condition才需要去实现它。
tryAcquire(int)//独占方式。尝试获取资源,成功则返回true,失败则返回false。
tryRelease(int)//独占方式。尝试释放资源,成功则返回true,失败则返回false。
tryAcquireShared(int)//共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
tryReleaseShared(int)//共享方式。尝试释放资源,成功则返回true,失败则返回false。

线程的中断机制

如果一个线程处于了阻塞状态(如线程调用了thread.sleep、thread.join、thread.wait、1.5中的condition.await、以及可中断的通道上的 I/O 操作方法后可进入阻塞状态),则在线程在检查中断标示时如果发现中断标示为true,则会在这些阻塞方法(sleep、join、wait、1.5中的condition.await及可中断的通道上的 I/O 操作方法)调用处抛出InterruptedException异常,并且在抛出异常后立即将线程的中断标示位清除,即重新设置为false。抛出异常是为了线程从阻塞状态醒过来,并在结束线程前让程序员有足够的时间来处理中断请求。

aquire流程

这里写图片描述

    //acquire算法是不许覆盖的,所以所有子类都要使用这个方法
    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&//tryAcquire必须在子类实现,否则就会抛出UnsupportedOperationException异常
            //EXCLUSIVE是Node中的一个类字段,初始固定为null
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            //清除中断标志位
            selfInterrupt();
    }
    
    private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode);
        Node pred = tail;
        if (pred != null) {//CLH已经进行初始化的状态
            node.prev = pred;
            //CAS操作追加到队尾
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        enq(node);//CLH还没进行初始化的状态
        return node;
    }

	final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
			    //检查自己是不是队列第二位且拿到号
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);//使用Unsafe机制暂停线程,使用当前对象作为blocker
        return Thread.interrupted();
    }

    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
            return true;
        if (ws > 0) {
			//ws大于0表示pred节点已经被取消。删除之。
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

Release流程

    public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }
    private void unparkSuccessor(Node node) {
        /*
         * If status is negative (i.e., possibly needing signal) try
         * to clear in anticipation of signalling.  It is OK if this
         * fails or if status is changed by waiting thread.
         */
        int ws = node.waitStatus;
        if (ws < 0)
	        //将node中的WaitStatus原子性的置为0
            compareAndSetWaitStatus(node, ws, 0);

        /*
         * Thread to unpark is held in successor, which is normally
         * just the next node.  But if cancelled or apparently null,
         * traverse backwards from tail to find the actual
         * non-cancelled successor.
         */
        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);
    }
	//CAS操作也是采用unsafe包实现的
    private static final boolean compareAndSetWaitStatus(Node node,
                                                         int expect,
                                                         int update) {
        return unsafe.compareAndSwapInt(node, waitStatusOffset,
                                        expect, update);
    }

ReentrantLock为例

ReentrantLock内部的Sync进一步实现AbstractQueuedSynchronizer的部分留空的逻辑。但是Sync类也是抽象类,FairSync,NonfairSync最终实现了完整逻辑。

Sync类实现了tryRelease的逻辑。就是尝试给state减去releases值,一般为1。

        protected final boolean tryRelease(int releases) {
            int c = getState() - releases;
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean free = false;
            if (c == 0) {
                free = true;
                setExclusiveOwnerThread(null);
            }
            setState(c);
            return free;
        }

NonfairSync和FairSync的主要区别就是在tryAcquire这个方法上。他们也最终提供了lock方法
首先看公平版本

        final void lock() {
            acquire(1);
        }


        /**
         * Fair version of tryAcquire.  Don't grant access unless
         * recursive call or no waiters or is first.
         */
        protected final boolean tryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            //如果当前state为0,检查下队列里是否有节点,如果没有,赶紧抢占
            if (c == 0) {
                if (!hasQueuedPredecessors() &&
                    compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            //如果发现虽然state不是0,但是就是占有锁的线程就是自己,从容给state+1
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;//一般为1
                if (nextc < 0)//最多支持的锁的数量不能超过int的最大值
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            //抢占失败,乖乖去排队
            return false;
        }

再来对比不公平版本

		
        final void lock() {
		    //先抢一波
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        }

        final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            //差别就在于不检查队列里是否有其他节点,我就是要抢,管你有没有人排队,抢第二波
            if (c == 0) {
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0) 
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            //仍然抢占失败,乖乖去排队
            return false;
        }

有timeout的实现

    //这是final的方法,子类不能覆盖,是提供给子类的标准模版
    public final boolean tryAcquireNanos(int arg, long nanosTimeout)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        return tryAcquire(arg) ||
            doAcquireNanos(arg, nanosTimeout);
    }

    private boolean doAcquireNanos(int arg, long nanosTimeout)
            throws InterruptedException {
        if (nanosTimeout <= 0L)
            return false;
        //计算自己的deadline
        final long deadline = System.nanoTime() + nanosTimeout;
        final Node node = addWaiter(Node.EXCLUSIVE);
        boolean failed = true;
        try {
            for (;;) {//进入自旋过程
                final Node p = node.predecessor();
                //检查自己是不是老二而且拿到号。
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return true;
                }
                //计算当前到deadline的时间
                nanosTimeout = deadline - System.nanoTime();
                if (nanosTimeout <= 0L)
                    return false;
                //如果当前时间到dealine的时间超过了spinForTimeoutThreshold,那就不自旋了,直接park
                if (shouldParkAfterFailedAcquire(p, node) &&
                    nanosTimeout > spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanosTimeout);
                //检查线程是否被打断
                if (Thread.interrupted())
                    throw new InterruptedException();
            }
        //java基础:finally语句是在return执行之后,return返回之前执行的
        } finally {
            //检查标志位,取消节点
            if (failed)
                cancelAcquire(node);
        }
    }

共享锁的实现

这篇文章太长了,请看续集【JUC之AQS:共享锁部分】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值