####解题思路:
考虑由于φ(i)\varphi (i)φ(i)是积性函数,因此我们对于每个质因子求出其贡献即可。 考虑nnn的某个质因子ppp,我们设sum(n,m)=∑i=1mφ(i∗n)sum(n,m)=\sum_{i=1}^{m} \varphi (i*n)sum(n,m)=∑i=1mφ(i∗n).那么考虑将质因子ppp的贡献单独处 理,可以得到φ(i∗n)=φ(p)∗∑i=1mφ(i∗np)+∑i=1m/pφ(i∗n)\varphi (i*n) = \varphi (p) * \sum _{i=1}^{m} \varphi (i* \frac{n}{p}) + \sum_{i=1}^{m/p} \varphi (i*n)φ(i∗n)=φ(p)∗∑i=1mφ(i∗pn)+∑i=1m/pφ(i∗n). 因此可以利用sum(n,m)=φ(p)∗sum(np,m)+sum(n,mp)sum(n,m) = \varphi (p) * sum(\frac {n}{p},m) + sum(n,\frac{m}{p})sum(n,m)=φ(p)∗sum(pn,m)+sum(n,pm)来递归地计算k. 最后可以利用ab%p=aφ(p)+b%φ(p)a^{b}\%p = a^{\varphi (p) + b\%\varphi (p)}ab%p=aφ(p)+b%φ(p),递归地计算kkk...kk^{k^{k^{...^{k}}}}kkk...k
####代码:
#include<cstdio>
#define LL long long
const int mod=1000000007;
const int maxn=10000005;
bool check[maxn];
LL sumPhi[maxn];
int cnt,phi[maxn],prime[maxn];
void init(){
phi[1]=1;
cnt=0;
for(int i=2;i<maxn;i++){
if(!check[i]){phi[i]=i-1;prime[cnt++]=i;}
for(int j=0;j<cnt;j++){
if(i*prime[j]>=maxn)break;
check[i*prime[j]]=true;
if(i%prime[j]==0){
phi[i*prime[j]]=phi[i]*prime[j];break;
}else{
phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
}
sumPhi[0]=0;
for(int i=1;i<maxn;i++)sumPhi[i]=(sumPhi[i-1]+phi[i])%mod;
}
LL work(int n,int m){
if(n==1) return sumPhi[m];
if(m==1) return phi[n];
if(m<1) return 0;
for(int i=0;i<cnt;++i){
if(n%prime[i]==0)
return ((prime[i]-1)*work(n/prime[i],m)%mod+work(n,m/prime[i]))%mod;
}
return 0;
}
LL pow(LL a,LL b,int p){
LL ret=1;
a%=p;
while(b){
if(b&1) ret=(ret*a)%p;
a=(a*a)%p;
b/=2;
}
return ret;
}
LL gao(LL k,int p){
if(p==1) return 0;
LL tmp=gao(k,phi[p]);
return pow(k,tmp+phi[p],p);
}
int main(){
int n,m,p;
init();
while(~scanf("%d%d%d",&n,&m,&p)){
LL k=work(n,m);
printf("%I64d\n",gao(k,p));
}
return 0;
}
####总结:
- φ(i∗n)=φ(p)∗∑i=1mφ(i∗np)+∑i=1m/pφ(i∗n)\varphi (i*n) = \varphi (p) * \sum _{i=1}^{m} \varphi (i* \frac{n}{p}) + \sum_{i=1}^{m/p} \varphi (i*n)φ(i∗n)=φ(p)∗∑i=1mφ(i∗pn)+∑i=1m/pφ(i∗n),sum(n,m)=φ(p)∗sum(np,m)+sum(n,mp)sum(n,m) = \varphi (p) * sum(\frac {n}{p},m) + sum(n,\frac{m}{p})sum(n,m)=φ(p)∗sum(pn,m)+sum(n,pm)
- ab%p=aφ(p)+b%φ(p)a^{b}\%p = a^{\varphi (p) + b\%\varphi (p)}ab%p=aφ(p)+b%φ(p),计算kkk...kk^{k^{k^{...^{k}}}}kkk...k