10.逻辑回归-下采样、过采样、交叉验证

本文介绍了一种使用Python进行信用卡欺诈检测的方法,通过数据预处理、特征选择、模型训练和评估等步骤,采用逻辑回归算法和SMOTE过采样技术提高模型的召回率。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import KFold, cross_val_score
from sklearn.metrics import confusion_matrix, recall_score, classification_report
from imblearn.over_sampling import SMOTE


data = pd.read_csv('creditcard.csv')
print(data.shape)
print(data.columns)
# print(data.head(100))
count_classes = pd.value_counts(data['Class'], sort=True)
count_classes.plot(kind='bar')
plt.title('Fraud class histogram')
plt.xlabel('Class')
plt.ylabel('Frequency')
plt.show()

# 归一化
data['new_Amount'] = StandardScaler().fit_transform(data['Amount'].values.reshape(-1, 1))
# 丢掉某些无用列
data = data.drop(['Time', 'Amount'], axis=1)

# 初始化数据
X = data.loc[:, data.columns != 'Class']
y = data.loc[:, data.columns == 'Class']

# 获取异常样本的个数
number_records_fraud = len(data[data.Class == 1])
# 获取异常样本的索引
fraud_index = np.array(data[data.Class == 1].index)

# 获取正常样本的个数
number_records_normal = len(data[data.Class == 0])
# 获取正常样本的索引
normal_index = data[data.Class == 0].index

# 下采样,采取与样本少的数量一样的数据
# 随机选择样本
random_normal_index = np.random.choice(normal_index, number_records_fraud, replace=False)
random_normal_index = np.array(random_normal_index)
# print(len(random_normal_index))=492

# 将随机选择的样本index与fraud样本的索引连接成一个新的array
under_sample_index = np.concatenate([random_normal_index, fraud_index])
# print(len(under_sample_index))=984

# 根据下采样的索引获取下采样的数据集
under_sample_data = data.iloc[under_sample_index]
# print(len(under_sample_data))=984
X_under_sample_data = under_sample_data[under_sample_data.columns[under_sample_data.columns != 'Class']]
y_under_sample_data = under_sample_data[under_sample_data.columns[under_sample_data.columns == 'Class']]
# 另外一种写法,待会验证一下
# X_under_sample_data = under_sample_data.loc[under_sample_data.columns != 'Class']
# y_under_sample_data = under_sample_data.loc[under_sample_data.columns == 'Class']



# The whole dataset 全部数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

# The under_sample dataset 下采样数据集
X_train_undersample, X_test_undersample, y_train_undersample, y_test_undersample = train_test_split(X_under_sample_data, y_under_sample_data, test_size=0.3, random_state=0)



def printing_Kfold_scores(x_train_data, y_train_data):
    # 生成交叉验证的参数,会得到二维列表train_index 和 test_index
    kfold = KFold(n_splits=5, shuffle=False)
    # 不同的正则项参数:惩罚力度
    c_param_range = [0.01, 0.1, 1, 10, 100]
    # fold 中有两个列表,train_index 和 test_index
    j = 0
    for c_param in c_param_range:
        # 这里for循环是为了使用不同的惩罚力度来初始化正则项
        print('-----------------------------------')
        print('C Parameter:', c_param)
        print('-----------------------------------')
        print('')
        recall_accs = []
        for iteration, index in enumerate(kfold.split(x_train_data), start=1):
            # for循环里面是使用5次交叉验证训练
            # 使用惩罚力度调用逻辑回归模型
            # 模型初始化
            lr = LogisticRegression(C = c_param, penalty = 'l1')
            # 训练模型
            lr.fit(x_train_data.iloc[index[0], :].values, y_train_data.iloc[index[0], :].values.ravel())
            # 用训练的模型预测数据
            y_predicted_undersample = lr.predict(x_train_data.iloc[index[1], :].values)

            recall_acc = recall_score(y_train_data.iloc[index[1], :].values, y_predicted_undersample)
            recall_accs.append(recall_acc)
            print('Iteration:', iteration, ': Recall Score = ', recall_acc)
        print('Mean Recall Score:',np.mean(recall_accs))


# y_predicted_undersample = printing_Kfold_scores(X_train_undersample, y_train_undersample)
# y_predicted_undersample = printing_Kfold_scores(X, y_train_undersample)

kfold = KFold(n_splits=5, shuffle=False)
recall_accs = []
for iteration, indexs in enumerate(kfold.split(X_train_undersample), start=1):
    lr = LogisticRegression(C=0.01, penalty='l1')
    lr.fit(X_train_undersample.iloc[indexs[0], :].values, y_train_undersample.iloc[indexs[0], :].values.ravel())
    # 预测下采样数据
    # y_predicted_labels = lr.predict(X_test_undersample.values)
    # recall_acc = recall_score(y_test_undersample, y_predicted_labels)
    # 预测所有数据
    y_predicted_labels = lr.predict(X_test.values)
    recall_acc = recall_score(y_test, y_predicted_labels)
    # 预测过采样数据
    # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
    # over_sampler = SMOTE(random_state=0)
    # os_X, os_y = over_sampler.fit_sample(X_train, y_train)
    # y_predicted_labels = lr.predict(X_test.values)
    # recall_acc = recall_score(y_test, y_predicted_labels)

    print('Recall:',recall_acc)
    recall_accs.append(recall_acc)
print('Recall Means:', np.mean(recall_accs))

 

1 2 3 4 5 6 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 7 8 9 10 11 12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 13 14 15 16 17 18 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 19 20 21 22 23 24 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 25 26 27 28 29 30 1.000000e+00 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 31 32 33 34 35 36 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 37 38 39 40 41 42 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 43 44 45 46 47 48 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 49 50 51 52 53 54 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 55 56 57 58 59 60 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 61 62 63 64 65 66 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 67 68 69 70 71 72 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 73 74 75 76 77 78 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 79 80 81 82 83 84 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 85 86 87 88 89 90 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 91 92 93 94 95 96 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 97 98 99 100 101 102 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 103 104 105 106 107 108 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 1.000000e+00 2.900701e-12 109 110 111 112 113 114 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 115 116 117 118 119 120 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 121 122 123 124 125 126 2.900701e-12 2.900701e-12 1.000000e+00 1.000000e+00 2.900701e-12 2.900701e-12 127 128 129 130 131 132 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 133 134 135 136 137 138 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 139 140 141 142 143 144 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 145 146 147 148 149 150 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 151 152 153 154 155 156 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 157 158 159 160 161 162 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 163 164 165 166 167 168 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 169 170 171 172 173 174 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 175 176 177 178 179 180 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 181 182 183 184 185 186 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 187 188 189 190 191 192 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 193 194 195 196 197 198 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 199 200 201 202 203 204 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 205 206 207 208 209 210 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 211 212 213 214 215 216 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 217 218 219 220 221 222 2.900701e-12 2.900701e-12 1.000000e+00 1.000000e+00 2.900701e-12 2.900701e-12 223 224 225 226 227 228 2.900701e-12 1.000000e+00 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 229 230 231 232 233 234 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 235 236 237 238 239 240 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 241 242 243 244 245 246 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 247 248 249 250 251 252 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 253 254 255 256 257 258 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 259 260 261 262 263 264 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 265 266 267 268 269 270 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 271 272 273 274 275 276 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 277 278 279 280 281 282 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 283 284 285 286 287 288 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 1.000000e+00 1.000000e+00 289 290 291 292 293 294 2.900701e-12 1.000000e+00 1.000000e+00 1.000000e+00 2.900701e-12 2.900701e-12 295 296 297 298 299 300 2.900701e-12 2.900701e-12 1.000000e+00 1.000000e+00 2.900701e-12 2.900701e-12 301 302 303 304 305 306 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 1.000000e+00 307 308 309 310 311 312 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 313 314 315 316 317 318 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 319 320 321 322 323 324 1.000000e+00 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 325 326 327 328 329 330 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 331 332 333 334 335 336 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 337 338 339 340 341 342 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 343 344 345 346 347 348 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 1.000000e+00 2.900701e-12 349 350 351 352 353 354 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 355 356 357 358 359 360 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 361 362 363 364 365 366 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 367 368 369 370 371 372 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 373 374 375 376 377 378 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 379 380 381 382 383 384 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 385 386 387 388 389 390 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 391 392 393 394 395 396 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 397 398 399 400 401 402 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 403 404 405 406 407 408 2.900701e-12 1.000000e+00 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 409 410 411 412 413 414 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 415 416 417 418 419 420 1.000000e+00 2.900701e-12 1.000000e+00 2.900701e-12 1.000000e+00 1.000000e+00 421 422 423 424 425 426 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 427 428 429 430 431 432 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 433 434 435 436 437 438 1.000000e+00 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 439 440 441 442 443 444 2.900701e-12 1.000000e+00 2.900701e-12 1.000000e+00 1.000000e+00 1.000000e+00 445 446 447 448 449 450 2.900701e-12 1.000000e+00 2.900701e-12 1.000000e+00 1.000000e+00 2.900701e-12 451 452 453 454 455 456 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 457 458 459 460 461 462 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 463 464 465 466 467 468 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 469 470 471 472 473 474 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 1.000000e+00 475 476 477 478 479 480 1.000000e+00 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 481 482 483 484 485 486 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 487 488 489 490 491 492 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 493 494 495 496 497 498 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 499 500 501 502 503 504 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 505 506 507 508 509 510 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 511 512 513 514 515 516 1.000000e+00 1.000000e+00 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 517 518 519 520 521 522 1.000000e+00 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 523 524 525 526 527 528 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 529 530 531 532 533 534 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 535 536 537 538 539 540 2.900701e-12 1.000000e+00 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 541 542 543 544 545 546 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 547 548 549 550 551 552 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 1.000000e+00 2.900701e-12 553 554 555 556 557 558 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 559 560 561 562 563 564 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 565 566 567 568 569 570 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 571 572 573 574 575 576 2.900701e-12 2.900701e-12 1.000000e+00 1.000000e+00 2.900701e-12 2.900701e-12 577 578 579 580 581 582 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 583 584 585 586 587 588 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 589 590 591 592 593 594 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 595 596 597 598 599 600 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 601 602 603 604 605 606 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 607 608 609 610 611 612 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 613 614 615 616 617 618 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 619 620 621 622 623 624 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 1.000000e+00 2.900701e-12 625 626 627 628 629 630 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 631 632 633 634 635 636 1.000000e+00 2.900701e-12 1.000000e+00 1.000000e+00 2.900701e-12 2.900701e-12 637 638 639 640 641 642 1.000000e+00 1.000000e+00 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 643 644 645 646 647 648 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 1.000000e+00 649 650 651 652 653 654 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 655 656 657 658 659 660 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 661 662 663 664 665 666 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 1.000000e+00 2.900701e-12 667 668 669 670 671 672 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 673 674 675 676 677 678 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 679 680 681 682 683 684 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 685 686 687 688 689 690 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 691 692 693 694 695 696 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 697 698 699 700 701 702 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 703 704 705 706 707 708 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 709 710 711 712 713 714 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 715 716 717 718 719 720 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 721 722 723 724 725 726 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 727 728 729 730 731 732 2.900701e-12 1.000000e+00 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 733 734 735 736 737 738 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 739 740 741 742 743 744 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 1.000000e+00 1.000000e+00 745 746 747 748 749 750 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 751 752 753 754 755 756 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 757 758 759 760 761 762 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 763 764 765 766 767 768 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 769 770 771 772 773 774 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 775 776 777 778 779 780 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 781 782 783 784 785 786 1.000000e+00 1.000000e+00 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 787 788 789 790 791 792 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 793 794 795 796 797 798 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 799 800 801 802 803 804 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 805 806 807 808 809 810 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 811 812 813 814 815 816 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 817 818 819 820 821 822 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 823 824 825 826 827 828 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 829 830 831 832 833 834 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 1.000000e+00 1.000000e+00 835 836 837 838 839 840 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 841 842 843 844 845 846 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 847 848 849 850 851 852 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 853 854 855 856 857 858 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 859 860 861 862 863 864 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 865 866 867 868 869 870 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 871 872 873 874 875 876 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 877 878 879 880 881 882 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 883 884 885 886 887 888 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 889 890 891 892 893 894 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 895 896 897 898 899 900 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 1.000000e+00 2.900701e-12 901 902 903 904 905 906 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 907 908 909 910 911 912 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 913 914 915 916 917 918 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 919 920 921 922 923 924 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 925 926 927 928 929 930 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 931 932 933 934 935 936 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 937 938 939 940 941 942 2.900701e-12 1.000000e+00 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 943 944 945 946 947 948 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 949 950 951 952 953 954 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 2.900701e-12 955 956 957 958 959 960 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 961 962 963 964 965 966 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 967 968 969 970 971 972 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 1.000000e+00 973 974 975 976 977 978 1.000000e+00 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 979 980 981 982 983 984 2.900701e-12 1.000000e+00 2.900701e-12 1.000000e+00 2.900701e-12 2.900701e-12 985 986 987 988 989 990 1.000000e+00 1.000000e+00 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 991 992 993 994 995 996 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 1.000000e+00 1.000000e+00 997 998 999 1000 2.900701e-12 2.900701e-12 2.900701e-12 2.900701e-12 [ reached getOption("max.print") -- omitted 2851 entries ]帮我分析,现在是不是偏差
07-03
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值