HDU-5155 Harry And Magic Box

本文介绍了一种计算在n*m矩阵中钻石分布种类的算法,通过动态规划和容斥原理,实现了对大范围数据的有效处理,支持n,m高达1e5的计算。

题目描述

\(n*m\)的矩阵内每一行每一列都有钻石,问钻石分布的种类?

答案有可能很大,所以输出答案对\(1000000007\)取模。

Input

对于每个测试用例,有两个整数\(n\)\(m\)表示框的大小。\(0< N,M<50\)

Output

输出每组数据的分发数.

Sample Input

1 1
2 2
2 3

Sample Output

1
7
25

这是一道比较优秀的容斥题。

首先,我们很显然的看到\(n,m\)范围都不是很大,考虑\(dp\)

定义\(dp[i][j]\)表示有\(i\)行和\(j\)列已经满足条件的方案数。

至于为什么是有\(i\)行和\(j\)列,而不是前\(i\)行和\(j\)列,因为相对应前\(i\)行,有\(i\)行会较简单,比较好求。

求完后直接容斥即可。

下面有了定义我们就可以直接开始大力\(dp\)了。

对于当前考虑的\(i\)\(j\)列,若不考虑钻石的放置一共有\(2^{i*j}\)中取法。

而现在我们需要将其中不满足条件的方案给去掉。

对于有\(i\)\(j\)列的,我们需要去掉的是少于\(i\)\(j\)列的,而我们的\(dp\)是从小到大枚举的。

所以,当我们求\(dp[i][j]\)时,\(dp[i-1][j]...\)等的\(dp\)值我们都已经求出来了。

而把\(i\)\(j\)列的方案中去掉\(a\)\(b\)列的方案不就是从\(i\)\(j\)列中选\(a\)\(b\)列吗?

行和列可以分开来算,即从\(i\)\(j\)列中选\(a\)\(b\)列的方案数=从\(i\)行中选\(a\)行的方案数*从\(j\)列中选\(b\)列的方案数。

\(C(i,a)*C(n,j)\)

同样我们枚举所有小于等于\((i,j)\)的点对,同时减去这些不满足条件的方案就好了。

注意负数要加上模数再取模

代码如下

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath>

using namespace std;

#define int long long
#define reg register
#define Raed Read
#define clr(a,b) memset(a,b,sizeof a)
#define Mod(x) (x>=mod)&&(x-=mod)
#define debug(x) cerr<<#x<<" = "<<x<<endl;
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)>(b)?(b):(a))
#define rep(a,b,c) for(reg int a=(b),a##_end_=(c); a<=a##_end_; ++a)
#define ret(a,b,c) for(reg int a=(b),a##_end_=(c); a<a##_end_; ++a)
#define drep(a,b,c) for(reg int a=(b),a##_end_=(c); a>=a##_end_; --a)
#define erep(i,G,x) for(int i=(G).Head[x]; i; i=(G).Nxt[i])
#pragma GCC target("avx,avx2,sse4.2")
#pragma GCC optimize(3)

inline int Read(void) {
    int res=0,f=1;
    char c;
    while(c=getchar(),c<48||c>57)if(c=='-')f=0;
    do res=(res<<3)+(res<<1)+(c^48);
    while(c=getchar(),c>=48&&c<=57);
    return f?res:-res;
}

template<class T>inline bool Min(T &a, T const&b) {
    return a>b?a=b,1:0;
}
template<class T>inline bool Max(T &a, T const&b) {
    return a<b?a=b,1:0;
}

const int N=55,M=1e5+5,mod=1e9+7;

bool MOP1;

int n,m,Fac[N],Inv[N],V[N],Pow[N*N],dp[N][N];

int C(int a,int b) {
    return ((Fac[a]*Inv[a-b])%mod*Inv[b])%mod;
}

bool MOP2;

inline void _main(void) {
    Fac[0]=Inv[0]=Fac[1]=V[1]=Inv[1]=Pow[0]=1ll;
    rep(i,2,50) {
        Fac[i]=(Fac[i-1]*i)%mod;
        V[i]=(mod-mod/i)*V[mod%i]%mod;
        Inv[i]=(Inv[i-1]*V[i])%mod;
    }
    rep(i,1,2500)Pow[i]=Pow[i-1]*2ll%mod;
    rep(i,0,50)rep(j,0,50) {
        dp[i][j]=Pow[i*j];
        rep(a,0,i)rep(b,0,j) {
            if(a==i&&b==j)continue;
            dp[i][j]=(dp[i][j]-((dp[a][b]*C(i,a))%mod*C(j,b))%mod)%mod;
        }
        dp[i][j]=(dp[i][j]+mod)%mod;
    }
    while(~scanf("%lld %lld",&n,&m)) {
        printf("%lld\n",dp[n][m]);
    }
}

signed main() {
    _main();
    return 0;
}

\(update.in.2019.9.10\)

发现教练的一种极强的做法,可以支持\(n,m\)高达\(1e5\)的做法,时间复杂度\(O(m*log_n)\)

\(f(i)\)表示至少有\(i\)列没有被覆盖的情况,一定不放的列有\(C(m,i)\)中选法。

再依次考虑每一行,剩下\(m-i\)列,有\(2^{m-i}\)中放法,需要减掉全部都不放的情况,因为要保证每行至少要有一个。故有\(2^{m-i}-1\)种放法。

也就是说,确定了哪些列不放之后,每一行\(2^{m-i}-1\)种放法,所以总的放法有\((2^{m-i}-1)^n\)

\(f(0)\)表示至少有0列一定不放,这就是所有的情况。

其中包含了至少有1列不放的情况,需要减掉。还需要把至少有2列不放的情况加回来,依次类推,有如下结果:\(ans=\sum (-1)^i*C(m,i)*(2^{m-i}-1)^n\)

代码如下:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath>

using namespace std;

#define int long long
#define reg register
#define Raed Read
#define clr(a,b) memset(a,b,sizeof a)
#define Mod(x) (x>=mod)&&(x-=mod)
#define debug(x) cerr<<#x<<" = "<<x<<endl;
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)>(b)?(b):(a))
#define rep(a,b,c) for(reg int a=(b),a##_end_=(c); a<=a##_end_; ++a)
#define ret(a,b,c) for(reg int a=(b),a##_end_=(c); a<a##_end_; ++a)
#define drep(a,b,c) for(reg int a=(b),a##_end_=(c); a>=a##_end_; --a)
#define erep(i,G,x) for(int i=(G).Head[x]; i; i=(G).Nxt[i])
#pragma GCC target("avx,avx2,sse4.2")
#pragma GCC optimize(3)

inline int Read(void) {
    int res=0,f=1;
    char c;
    while(c=getchar(),c<48||c>57)if(c=='-')f=0;
    do res=(res<<3)+(res<<1)+(c^48);
    while(c=getchar(),c>=48&&c<=57);
    return f?res:-res;
}

template<class T>inline bool Min(T &a, T const&b) {
    return a>b?a=b,1:0;
}
template<class T>inline bool Max(T &a, T const&b) {
    return a<b?a=b,1:0;
}

const int N=1e5+5,M=1e5+5,mod=1e9+7;

bool MOP1;

inline int Pow(int x,int y) {
    int res=1;
    while(y) {
        if(y&1)res=(res*x)%mod;
        x=x*x%mod,y>>=1;
    }
    return res;
}

int Fac[N],Inv[N],Pow_2[N],V[N];

int C(int a,int b) {
    if(a<b||b<0)return 0;
    return 1ll*Fac[a]*((1ll*Inv[a-b]*Inv[b])%mod)%mod;
}

bool MOP2;

inline void _main(void) {
    Fac[0]=Inv[0]=Fac[1]=V[1]=Inv[1]=Pow_2[0]=1ll;
    Pow_2[1]=2ll;
    ret(i,2,N) {
        Fac[i]=(1ll*Fac[i-1]*i)%mod;
        V[i]=1ll*(mod-mod/i)*V[mod%i]%mod;
        Inv[i]=(1ll*Inv[i-1]*V[i])%mod;
        Pow_2[i]=1ll*Pow_2[i-1]*2%mod;
    }
    int n,m;
    while(~scanf("%d %d\n",&n,&m)) {
        int Ans=0;
        rep(i,0,m) {
            int temp=1ll*C(m,i)*Pow(Pow_2[m-i]-1,n)%mod;
            if(i&1)Ans-=temp;
            else Ans+=temp;
            if(Ans>mod)Ans-=mod;
            if(Ans<0)Ans+=mod;
        }
        printf("%d\n",Ans);
    }

}

signed main() {
    _main();
    return 0;
}

转载于:https://www.cnblogs.com/dsjkafdsaf/p/11459136.html

### 关于HDU - 6609 的题目解析 由于当前未提供具体关于 HDU - 6609 题目的详细描述,以下是基于一般算法竞赛题型可能涉及的内容进行推测和解答。 #### 可能的题目背景 假设该题目属于动态规划类问题(类似于多重背包问题),其核心在于优化资源分配或路径选择。此类问题通常会给出一组物品及其属性(如重量、价值等)以及约束条件(如容量限制)。目标是最优地选取某些物品使得满足特定的目标函数[^2]。 #### 动态转移方程设计 如果此题确实是一个变种的背包问题,则可以采用如下状态定义方法: 设 `dp[i][j]` 表示前 i 种物品,在某种条件下达到 j 值时的最大收益或者最小代价。对于每一种新加入考虑范围内的物体 k ,更新规则可能是这样的形式: ```python for i in range(n): for s in range(V, w[k]-1, -1): dp[s] = max(dp[s], dp[s-w[k]] + v[k]) ``` 这里需要注意边界情况处理以及初始化设置合理值来保证计算准确性。 另外还有一种可能性就是它涉及到组合数学方面知识或者是图论最短路等相关知识点。如果是后者的话那么就需要构建相应的邻接表表示图形结构并通过Dijkstra/Bellman-Ford/Floyd-Warshall等经典算法求解两点间距离等问题了[^4]。 最后按照输出格式要求打印结果字符串"Case #X: Y"[^3]。 #### 示例代码片段 下面展示了一个简单的伪代码框架用于解决上述提到类型的DP问题: ```python def solve(): t=int(input()) res=[] cas=1 while(t>0): n,k=list(map(int,input().split())) # Initialize your data structures here ans=find_min_unhappiness() # Implement function find_min_unhappiness() res.append(f'Case #{cas}: {round(ans)}') cas+=1 t-=1 print("\n".join(res)) solve() ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值