import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #number1-10 data.28X28 784个像素点。网上下载这个包 mnist = input_data.read_data_sets('MNIST_data', one_hot=True) def add_layer(inputs, in_size, out_size, activation_function=None): Weights = tf.Variable(tf.random_normal([in_size, out_size])) # 定义权重为随机变量,因为随机变量生成初始变量要比0好很多。形状是【2】【3】:2行3列 # 机器学习推荐变量不为0.他的size是:1行our_size列 biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) Wx_plus_b = tf.matmul(inputs, Weights) + biases # matmul是矩阵的乘法。还没被激活的值存在这个变量中 if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs #定义一个准确度函数 def compute_accuracy(v_xs, v_ys): global prediction #生成一个预测值,是一个概率 y_pre = sess.run(prediction,feed_dict={xs:v_xs}) #与真实数据对比 correct_prediction = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys}) return result #define placeholder for input.784个像素点 xs = tf.placeholder(tf.float32, [None, 784]) ys = tf.placeholder(tf.float32, [None, 10]) #add output layer. softmax一般是用来做分类的函数 prediction = add_layer(xs,784,10,activation_function=tf.nn.softmax) #the error between prediction and real data.在softmax来说,这个cross_entropy算法做分类,生成分类算法 cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1]))#loss train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.Session() #important stetp if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1: init = tf.initialize_all_variables() else: init = tf.global_variables_initializer() sess.run(init) for i in range(1000): #这个就是不需要直接把全部的数据放进神经网络学习,分开100个100个这样会提高效率。 #不是学习整套的data,会有一个快的速度 #有traindata和testdata batch_xs,batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys}) if i % 50 == 0: print(compute_accuracy( mnist.test.images, mnist.test.labels))
Classification学习
最新推荐文章于 2021-03-25 23:11:31 发布