Web Content Mining

本文介绍网页内容挖掘领域的核心问题及现有技术解决方案,包括结构化数据提取、意见挖掘、知识合成等,探讨了从网页中自动提取有用信息的技术挑战。

 

Web mining is a rapid growing research area. It consists of Web usage mining, Web structure mining, and Web content mining. Web usage mining refers to the discovery of user access patterns from Web usage logs. Web structure mining tries to discover useful knowledge from the structure of hyperlinks. Web content mining aims to extract/mine useful information or knowledge from web page contents. This tutorial focuses on Web Content Mining.

Web content mining is related but different from data mining and text mining. It is related to data mining because many data mining techniques can be applied in Web content mining. It is related to text mining because much of the web contents are texts. However, it is also quite different from data mining because Web data are mainly semi-structured and/or unstructured, while data mining deals primarily with structured data. Web content mining is also different from text mining because of the semi-structure nature of the Web, while text mining focuses on unstructured texts. Web content mining thus requires creative applications of data mining and/or text mining techniques and also its own unique approaches. In the past few years, there was a rapid expansion of activities in the Web content mining area. This is not surprising because of the phenomenal growth of the Web contents and significant economic benefit of such mining. However, due to the heterogeneity and the lack of structure of Web data, automated discovery of targeted or unexpected knowledge information still present many challenging research problems. In this tutorial, we will examine the following important Web content mining problems and discuss existing techniques for solving these problems. Some other emerging problems will also be surveyed.

  • Data/information extraction: Our focus will be on extraction of structured data from Web pages, such as products and search results. Extracting such data allows one to provide services. Two main types of techniques, machine learning and automatic extraction are covered.
  • Web information integration and schema matching: Although the Web contains a huge amount of data, each web site (or even page) represents similar information differently. How to identify or match semantically similar data is a very important problem with many practical applications. Some existing techniques and problems are examined.
  • Opinion extraction from online sources: There are many online opinion sources, e.g., customer reviews of products, forums, blogs and chat rooms. Mining opinions (especially consumer opinions) is of great importance for marketing intelligence and product benchmarking. We will introduce a few tasks and techniques to mine such sources.
  • Knowledge synthesis: Concept hierarchies or ontology are useful in many applications. However, generating them manually is very time consuming. A few existing methods that explores the information redundancy of the Web will be presented. The main application is to synthesize and organize the pieces of information on the Web to give the user a coherent picture of the topic domain..
  • Segmenting Web pages and detecting noise: In many Web applications, one only wants the main content of the Web page without advertisements, navigation links, copyright notices. Automatically segmenting Web page to extract the main content of the pages is interesting problem. A number of interesting techniques have been proposed in the past few years.

All these tasks present major research challenges and their solutions also have immediate real-life applications. The tutorial will start with a short motivation of the Web content mining. We then discuss the difference between web content mining and text mining, and between Web content mining and data mining. This is followed by presenting the above problems and current state-of-the-art techniques. Various examples will also be given to help participants to better understand how this technology can be deployed and to help businesses. All parts of the tutorial will have a mix of research and industry flavor, addressing seminal research concepts and looking at the technology from an industry angle.

 

For more information, please visit our website: http://www.knowlesys.com 

提供了基于BP(Back Propagation)神经网络结合PID(比例-积分-微分)控制策略的Simulink仿真模型。该模型旨在实现对杨艺所著论文《基于S函数的BP神经网络PID控制器及Simulink仿真》中的理论进行实践验证。在Matlab 2016b环境下开发,经过测试,确保能够正常运行,适合学习和研究神经网络在控制系统中的应用。 特点 集成BP神经网络:模型中集成了BP神经网络用于提升PID控制器的性能,使之能更好地适应复杂控制环境。 PID控制优化:利用神经网络的自学习能力,对传统的PID控制算法进行了智能调整,提高控制精度和稳定性。 S函数应用:展示了如何在Simulink中通过S函数嵌入MATLAB代码,实现BP神经网络的定制化逻辑。 兼容性说明:虽然开发于Matlab 2016b,但理论上兼容后续版本,可能会需要调整少量配置以适配不同版本的Matlab。 使用指南 环境要求:确保你的电脑上安装有Matlab 2016b或更高版本。 模型加载: 下载本仓库到本地。 在Matlab中打开.slx文件。 运行仿真: 调整模型参数前,请先熟悉各模块功能和输入输出设置。 运行整个模型,观察控制效果。 参数调整: 用户可以自由调节神经网络的层数、节点数以及PID控制器的参数,探索不同的控制性能。 学习和修改: 通过阅读模型中的注释和查阅相关文献,加深对BP神经网络与PID控制结合的理解。 如需修改S函数内的MATLAB代码,建议有一定的MATLAB编程基础。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值