Web Content Mining

网页内容挖掘技术
探讨了网页内容挖掘的主要挑战和技术,包括结构化数据提取、信息整合、意见挖掘等,并介绍了现有解决方案。

keyword: Web Data Mining - Exploring Hyperlinks, Contents and Usage Data

Web mining is a rapid growing research area. It consists of Web usage mining, Web structure mining, and Web content mining. Web usage mining refers to the discovery of user access patterns from Web usage logs. Web structure mining tries to discover useful knowledge from the structure of hyperlinks. Web content mining aims to extract/mine useful information or knowledge from web page contents. This tutorial focuses on Web Content Mining.

Web content mining is related but different from data mining and text mining. It is related to data mining because many data mining techniques can be applied in Web content mining. It is related to text mining because much of the web contents are texts. However, it is also quite different from data mining because Web data are mainly semi-structured and/or unstructured, while data mining deals primarily with structured data. Web content mining is also different from text mining because of the semi-structure nature of the Web, while text mining focuses on unstructured texts. Web content mining thus requires creative applications of data mining and/or text mining techniques and also its own unique approaches. In the past few years, there was a rapid expansion of activities in the Web content mining area. This is not surprising because of the phenomenal growth of the Web contents and significant economic benefit of such mining. However, due to the heterogeneity and the lack of structure of Web data, automated discovery of targeted or unexpected knowledge information still present many challenging research problems. In this tutorial, we will examine the following important Web content mining problems and discuss existing techniques for solving these problems. Some other emerging problems will also be surveyed.

  • Data/information extraction: Our focus will be on extraction of structured data from Web pages, such as products and search results. Extracting such data allows one to provide services. Two main types of techniques, machine learning and automatic extraction are covered.
  • Web information integration and schema matching: Although the Web contains a huge amount of data, each web site (or even page) represents similar information differently. How to identify or match semantically similar data is a very important problem with many practical applications. Some existing techniques and problems are examined.
  • Opinion extraction from online sources: There are many online opinion sources, e.g., customer reviews of products, forums, blogs and chat rooms. Mining opinions (especially consumer opinions) is of great importance for marketing intelligence and product benchmarking. We will introduce a few tasks and techniques to mine such sources.
  • Knowledge synthesis: Concept hierarchies or ontology are useful in many applications. However, generating them manually is very time consuming. A few existing methods that explores the information redundancy of the Web will be presented. The main application is to synthesize and organize the pieces of information on the Web to give the user a coherent picture of the topic domain..
  • Segmenting Web pages and detecting noise: In many Web applications, one only wants the main content of the Web page without advertisements, navigation links, copyright notices. Automatically segmenting Web page to extract the main content of the pages is interesting problem. A number of interesting techniques have been proposed in the past few years.

All these tasks present major research challenges and their solutions also have immediate real-life applications. The tutorial will start with a short motivation of the Web content mining. We then discuss the difference between web content mining and text mining, and between Web content mining and data mining. This is followed by presenting the above problems and current state-of-the-art techniques. Various examples will also be given to help participants to better understand how this technology can be deployed and to help businesses. All parts of the tutorial will have a mix of research and industry flavor, addressing seminal research concepts and looking at the technology from an industry angle.

 

For more information, please visit our website: http://www.knowlesys.com 

本项目采用C++编程语言结合ROS框架构建了完整的双机械臂控制系统,实现了Gazebo仿真环境下的协同运动模拟,并完成了两台实体UR10工业机器人的联动控制。该毕业设计在答辩环节获得98分的优异成绩,所有程序代码均通过系统性调试验证,保证可直接部署运行。 系统架构包含三个核心模块:基于ROS通信架构的双臂协调控制器、Gazebo物理引擎下的动力学仿真环境、以及真实UR10机器人的硬件接口层。在仿真验证阶段,开发了双臂碰撞检测算法和轨迹规划模块,通过ROS控制包实现了末端执行器的同步轨迹跟踪。硬件集成方面,建立了基于TCP/IP协议的实时通信链路,解决了双机数据同步和运动指令分发等关键技术问题。 本资源适用于自动化、机械电子、人工智能等专业方向的课程实践,可作为高年级课程设计、毕业课题的重要参考案例。系统采用模块化设计理念,控制核心与硬件接口分离架构便于功能扩展,具备工程实践能力的学习者可在现有框架基础上进行二次开发,例如集成视觉感知模块或优化运动规划算法。 项目文档详细记录了环境配置流程、参数调试方法和实验验证数据,特别说明了双机协同作业时的时序同步解决方案。所有功能模块均提供完整的API接口说明,便于使用者快速理解系统架构并进行定制化修改。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值