MICCAI 2020/JUN MA 直方图匹配增强域自适应技术-源码

MICCAI 2020/JUN MA 直方图匹配增强域自适应技术

在这里插入图片描述

源码地址:https://github.com/JunMa11/HM_DataAug

主要问题:

  • 多中心、多来源、多疾病

多中心(为一个共同目标合作、遵守共同试验程序和规则的多个独立医疗机构或组织)

测试案例来自不同的领域(例如,新的磁共振扫描仪、临床中心),性能将会降。

解决方法

  1. 提出了一种直方图匹配(HM)数据增强方法来消除域间隙。
  2. 具体来说,通过使用 HM 将测试用例的强度分布转移到现有的训练用例来生成新的训练用例。
  3. 该方法非常简单,可以在许多分割任务中以即插即用的方式使用。

主要目标

  1. 目标是通过将目标数据集的强度分布转移到源数据集来提高神经网络的泛化能力。
  2. 具体来说,我们使用直方图匹配将目标数据集的亮度外观带到源数据集。
  3. 没有修改网络结构或损失函数,只是增加了训练数据集,这非常简单,可以作为任何分段任务的即插即用方法。

Method

### CMNet Paper or Resources from MICCAI 2020 Conference The search for specific papers such as those related to CMNet within the MICCAI 2020 conference proceedings requires an understanding of where and how these materials are indexed. The official website for the Brain Lesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries Segmentation challenge provides information on tasks like preoperative MRI scans segmentation but does not directly mention CMNet[^1]. For more detailed research articles including potential mentions of CMNet, one should refer to comprehensive collections of MICCAI 2020 publications which can be accessed through academic databases or direct links provided by organizers. A two-stage cascade network with ranking loss was discussed in another context at this event, indicating that various neural networks were indeed topics of interest during MICCAI 2020[^2]. To access all parts of the MICCAI 2020 publication series, including sections dedicated to brain development atlases, DWI angiography, functional brain networks, neuroimaging, PET imaging among others, interested parties may download relevant documents via shared cloud services[^3]. Additionally, Springer offers online access to Part VII containing multiple chapters covering diverse aspects under medical image computing and computer-assisted intervention studies[^4]. ```python import requests from bs4 import BeautifulSoup def find_cmnet_paper(): url = 'https://link.springer.com/book/10.1007/978-3-030-59728-3' response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') cmnet_papers = [] for link in soup.find_all('a'): title = link.get_text() href = link.get('href', '') if 'CMNet' in title: cmnet_papers.append((title, href)) return cmnet_papers cmnet_results = find_cmnet_paper() print(cmnet_results) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值