Spark数据倾斜
产生原因
首先RDD的逻辑其实时表示一个对象集合。在物理执行期间,RDD会被分为一系列的分区,每个分区都是整个数据集的子集。当spark调度并运行任务的时候,Spark会为每一个分区中的数据创建一个任务。大部分的任务处理的数据量差不多,但是有少部分的任务处理的数据量很大,因而Spark作业会看起来运行的十分的慢,从而产生数据倾斜(进行shuffle的时候)。
数据倾斜只会发生在shuffle过程中。这里给大家罗列一些常用的并且可能会触发shuffle操作的算子:distinct、groupByKey、reduceByKey、aggregateByKey、join、cogroup、repartition等。出现数据倾斜时,可能就是你的代码中使用了这些算子中的某一个所导致的。例子:
多个key对应的values,比如一共是90万。可能某个key对应了88万数据,被分配到一个task上去面去执行。另外两个task,可能各分配到了1万数据,可能是数百个key,对应的1万条数据。这样就会出现数据倾斜问题。解决方法
(1):数据混洗的时候,使用参数的方式为混洗后的RDD指定并行度实现原理:提高shuffle操作的并行度,增加shuffle read task的数量,可以让原本分配给一个task的多个key分配给多个task,从而让每个task处理比原来更少的数据,举例来说,如果原本有5个key,每个key对应10条数据,这5个key都是分配给一个task的,那么这个task就要处理50条数据。而增加了shuffle read task以后,每个task就分配到一个key,即每个task就处理10条数据,那么自然每个task的执行时间都会变短了(很简单,主要给我们所有的shuffle算子,比如groupByKey、countByKey、reduceByKey。在调用的时候,传入进去一个参数。那个数字,就代表了那个shuffle操作的red