7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
(Figure 1)
Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.
Input
Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.
Output
Your program is to write to standard output. The highest sum is written as an integer.
Sample Input
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
Sample Output
30
题意:
图给出了一个数字三角形,请编写一个程序,计算从顶至底的某处的一条路径,使该路径所经过的数字的总和最大。
(1)每一步可沿左斜线向下或右斜线向下
(2)1 < 三角形行数 < 100
(3)三角形数字为0,1,…99
eg:
思路:从底往上递推,每一行的每个点的最大值=自身+下面一行对应左右两个点的最大值,一直到到顶
代码:
#include<iostream>
using namespace std;
int dp[105][105];//表示第i行第j个元素的数值
int main()
{
int n;
cin>>n;
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++)
cin>>dp[i][j];
for(int i=n-1;i>=1;i--)
for(int j=1;j<=i;j++)
dp[i][j]=max(dp[i+1][j],dp[i+1][j+1])+dp[i][j];
cout<<dp[1][1]<<endl;
return 0;
}