sklearn pandas matplot

pandas 读取问题

import pandas as pd
# 读取 
path = 'xxx'
data = pd.read_csv(path, header=None, names=['label','title','text'])

#分比例
from sklearn.model_selection import train_test_split
 
x= data.iloc[:,:] # 选取 data 所有行、所有列数据
y = data.iloc[:,0] # 选取 data 所有行、第一列数据
 
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.4, random_state=0

#保存:
X_train.to_csv('X_train.csv', index=False)
X_test.to_csv('X_test.csv', index=False)
y_train.to_csv('y_train.csv', index=False)
y_test.to_csv('y_test.csv', index=False)

import numpy as np 

from sklearn import linear model, svm, neighbors, datasets, preprocessing
from sklearn.model selection import train test split
from sklearn.metrics import accuracy score, classification report, confusion matrix, f1 score
from sklearn.model selection import cross val scor
from matplotlib import pyplot as plt
from sklearn.metrics import roc curve,precision_recall_curve


import warnings
warnings.filterwarnings("ignore")
np.random.RandomState(0)
#加载数据cancer = datasets.load breast cancer()
x,y= cancer.data, cancer.target







print(accuracy_score(y test, y_pred))
print(fl score(y_test, y_pred, average='micro'))
print(classification report(y test, y_pred))
#混淆矩阵
brint(confusion matrix(y test, y pred))
fpr, tpr, thresholds = roc_curve(y_pred, y_test)
plt.plot(fpr.tpr.'b')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')plt.title('Roc curve')

https://chat18.aichatos.xyz/#/chat/1714305686355

在问 | 让知识无界,智能触手可及

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值