FPN输出的特征图为什么比ResNet输出的四个阶段图多一个

文章介绍了如何利用ResNet的不同阶段特征图构建FeaturePyramidNetwork(FPN),生成P2-P6五个层次的特征图,用于目标检测和图像识别任务中的特征融合和尺度不变性。
# 先从 resnet 抽取四个不同阶段的特征图 C2-C5。
_, C2, C3, C4, C5 =
resnet_graph(input_image, config.BACKBONE,stage5=True, train_bn=config.TRAIN_BN)

# Top-down Layers 构建自上而下的网络结构
# 从 C5开始处理,先卷积来转换特征图尺寸
P5 = KL.Conv2D(256, (1, 1), name='fpn_c5p5')(C5)
# 上采样之后的P5和卷积之后的 C4像素相加得到 P4,后续的过程就类似了
P4 = KL.Add(name="fpn_p4add")([
            KL.UpSampling2D(size=(2, 2), name="fpn_p5upsampled")(P5),
            KL.Conv2D(256, (1, 1),name='fpn_c4p4')(C4)])
P3 = KL.Add(name="fpn_p3add")([
            KL.UpSampling2D(size=(2, 2), name="fpn_p4upsampled")(P4),
            KL.Conv2D(256, (1, 1), name='fpn_c3p3')(C3)])
P2 = KL.Add(name="fpn_p2add")([
            KL.UpSampling2D(size=(2, 2),name="fpn_p3upsampled")(P3),
            KL.Conv2D(256, (1, 1), name='fpn_c2p2')(C2)])


# P2-P5最后又做了一次3*3的卷积,作用是消除上采样带来的混叠效应
# Attach 3x3 conv to all P layers to get the final feature maps.
P2 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p2")(P2)
P3 = KL.Conv2D(256, (3, 3), padding="SAME",name="fpn_p3")(P3)
P4 = KL
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值