图像处理
文章平均质量分 83
daimashiren
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
通俗理解拉普拉斯算子(Laplace)
中心点为负数,上下左右都是正数,经过Laplace算子处理后 (对应位置相乘再相加),如果中心的上下左右都是有灰度变化的,那么判定该中心点位于边缘内,那么经此处理后,边缘中心的灰度值会变小,而周围上下左右灰度值不变,因而最后输出的图像中,只有边缘周围上下左右部分的灰度值被保留,而边缘部分则趋于0或等于0 (小于0的部分会被截断为0),因此需要变号 (公式中令c = -1) ,即从原图中减去Laplace算子处理后的图像,使得边缘中心的灰度值变大,而边缘周围的灰度值减少,就表现为原图中的边缘原创 2022-10-17 16:23:20 · 29528 阅读 · 3 评论 -
关于图像傅里叶变换得到的频谱图的通俗理解
傅里叶变换过程:经过傅里叶变化且频谱居中化处理的频谱图:1.如果将图像某一行上的灰度变化看作是一个离散信号,那么整张图像可以看作是一个分布在二维平面上的信号,因此图像可看作是空间域信号。傅里叶变换则是将图像灰度分布(空间域信号)变换到了频域上,给我们提供了观察图像的另一个视角。2.图像的频谱图(频谱居中后)的中心点是频率最低点,以该点为圆心,不同半径的上的点表示不同的频率。这里的图像频率是指对应原图像中的某灰度曲线变化的快慢(这么说不严谨,但是按照上面第1点的角度,似乎也可以这么理解原创 2022-01-20 14:58:55 · 21982 阅读 · 7 评论
分享