A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3
1 2 10
0 0 0
#include<stdio.h>
int f(int A,int B,int n)
{
if(n==1||n==2)
return 1;
else
return (A*f(A,B,n-1)+B*f(A,B,n-2))%7;
}
int main()
{
int a,b,n;
while(~scanf("%d%d%d",&a,&b,&n)&&n&&a&&b)
{
printf("%d\n",f(a,b,n));
}
return 0;
}
这个代码提交会出现超时,如果用f(a,b,n)会出现栈溢出,考虑f(n)=Af(n-1)+Bf(n-2)
由于f(n)是由前两个数字组合产生,那么只要有两个数字组合相同的情况发生就一定一会产生循环!
两个数字的组合的最大可能值为7(0–6)x7(0—6)=49,因此只要在调用迭代方法中限制n在0~48就可以了
优化如下:
#include<stdio.h>
int f(int A,int B,int n)
{
if(n==1||n==2)
return 1;
else
return (A*f(A,B,n-1)+B*f(A,B,n-2))%7;
}
int main()
{
int a,b,n;
while(~scanf("%d%d%d",&a,&b,&n)&&n&&a&&b)
{
printf("%d\n",f(a,b,n%49));
}
return 0;
}
#include <stdio.h>
#include <string.h>
int s[50];
int main()
{
int a,b,n,i;
while(scanf("%d%d%d",&a,&b,&n),a || b || n)
{
int i;
s[0]=s[1]=1;
for(i = 2; i<50; i++)
{
s[i] = (a*s[i-1]+b*s[i-2])%7;
if(s[i] ==1 && s[i-1] == 1)
{
break;
}
}
n = n%(i-1);
if(n == 0)
printf("%d\n",s[i-2]);
else
printf("%d\n",s[n-1]);
}
return 0;
}