A. UCloud 机房的网络搭建
UCloud 刚刚建立一个新机房,近日正在进行网络搭建。机房内有 nn 台服务器和 mm 个分线器,整个机房只有一个网线出口。分线器的作用是将一根网线转换成多根网线。蒜头君也知道每个分线器输出的最大网线根数(不一定要将分线器输出的每根线都用上),问你至少需要使用多少个分线器才能使得每台服务器都有网线可用。
输入格式
第一行输入 n,m(0 \le n,m \le 100)n,m(0≤n,m≤100)。
第二行输入包含 mm 个整数的数组 A(0 \le A_i \le 10)A(0≤A
i
≤10) 表示每个分线器输出的最大网线根数。
输出格式
输出最少需要的分线器数量。若不能使得所有服务器都有网线可用,输出一行Impossible。
解析: 这题得按照图片所给写程序,按照自己的思路设计是不对的,要考虑边界值
#include<bits/stdc++.h>usingnamespacestd;
constint maxn = 110;
int a[maxn];
int n,m;
bool cmp(int x,int y)
{
return x > y;
}
int main()
{
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
cin >> n >> m;
for(int i = 0; i < m; i ++)
cin >> a[i];
sort(a,a+n,cmp);
int sum = 1;
if(n<=1)
{
cout << 0 << endl;
return0;
}
n-=a[0];
for(int i = 1; i < m; i ++)
{
if(n <= 0) break;
else
{
n = n - (a[i] - 1);
++ sum;
}
}
if(n>0)
cout << "Impossible"<< endl;
elsecout << sum << endl;
return0;
}
B. UCloud 的安全秘钥(简单)
每个 UCloud 用户会构造一个由数字序列组成的秘钥,用于对服务器进行各种操作。作为一家安全可信的云计算平台,秘钥的安全性至关重要。因此,UCloud 每年会对用户的秘钥进行安全性评估,具体的评估方法如下:
首先,定义两个由数字序列组成的秘钥 aa 和 bb 近似匹配(\approx≈) 的关系。aa 和 bb 近似匹配当且仅当同时满足以下两个条件:
|a|=|b|∣a∣=∣b∣,即 aa 串和 bb 串长度相等。
对于每种数字 cc,cc 在 aa 中出现的次数等于 cc 在 bb 中出现的次数。
此时,我们就称 aa 和 bb 近似匹配,即 a \approx ba≈b。例如,(1,3,1,1,2)\approx(2,1,3,1,1)(1,3,1,1,2)≈(2,1,3,1,1)。
UCloud 每年会收集若干不安全秘钥,这些秘钥组成了不安全秘钥集合 TT。对于一个秘钥 ss 和集合 TT 中的秘钥 tt 来说,它们的相似值定义为:ss 的所有连续子串中与 tt 近似匹配的个数。相似值越高,说明秘钥 ss 越不安全。对于不安全秘钥集合 TT 中的每个秘钥 tt,你需要输出它和秘钥 ss 的相似值,用来对用户秘钥的安全性进行分析。
输入格式
第一行包含一个正整数 nn,表示 ss 串的长度。
第二行包含 nn 个正整数 s_1,s_2,...,s_n(1\leq s_i\leq n)s
1
,s
2
,...,s
n
(1≤s
i
≤n),表示 ss 串。
接下来一行包含一个正整数 mm,表示询问的个数。
接下来 mm 个部分:
每个部分第一行包含一个正整数 k(1\leq k\leq n)k(1≤k≤n),表示每个 tt 串的长度。
每个部分第二行包含 kk 个正整数 t_1,t_2,...,t_k(1\leq t_i\leq n)t
1
,t
2
,...,t
k
(1≤t
i
≤n),表示 TT 中的一个串 tt。
输入数据保证 TT 中所有串长度之和不超过 200000200000。
对于简单版本:1\leq n,m\leq 1001≤n,m≤100;
对于中等版本:1\leq n\leq 50000,1\leq m\leq 5001≤n≤50000,1≤m≤500;
对于困难版本:1 \le n \le 50000, 1 \le m \le 1000001≤n≤50000,1≤m≤100000。
输出格式
输出 mm 行,每行一个整数,即与 TT 中每个串 tt 近似匹配的 ss 的子串数量。
样例解释
对于第一个询问,(3,2,1,3)\approx(2,3,1,3)(3,2,1,3)≈(2,3,1,3),(3,2,1,3)\approx(3,1,3,2)(3,2,1,3)≈(3,1,3,2);
对于第二个询问,(1,3)\approx(3,1)(1,3)≈(3,1),(1,3)\approx(1,3)(1,3)≈(1,3);
对于第三个询问,(3,2)\approx(2,3)(3,2)≈(2,3),(3,2)\approx(3,2)(3,2)≈(3,2)。
样例输入
523132343213213232
样例输出
222
解析按照题目所给模拟。
#include<iostream>#include<algorithm>#include<string.h>#include<cstdio>usingnamespacestd;
int a[150],b[150];
int mp[150],mp1[150];
int main()
{
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int n;
cin >> n;
for(int i = 0;i < n;i ++)
{
cin >> a[i];
}
int m;
cin >> m;
while(m --)
{
int k;
memset(mp,0,sizeof(mp1));
cin >> k;
int cnt = 0;
for(int i = 0;i < k;i ++)
{
cin >> b[i];
mp[b[i]] ++;///把现有数组标记
}
int start = n - k; // start positionfor(int i = 0;i <= start;i ++)
{
bool flag = true;
memset(mp1,0,sizeof(mp1));
for(int j = i;j < k + i;j ++)
{
mp1[a[j]] ++;/// 把原数组的标记
}
for(int i = 0;i < k;i ++)
{
if(mp[b[i]] != mp1[b[i]])
{
flag = false;
break;
}
}
if(flag) cnt ++;
}
cout << cnt << endl;
}
return0;
}