750A- New Year and Hurry

A. New Year and Hurry
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Limak is going to participate in a contest on the last day of the 2016. The contest will start at 20:00 and will last four hours, exactly until midnight. There will be n problems, sorted by difficulty, i.e. problem 1 is the easiest and problem n is the hardest. Limak knows it will take him 5·i minutes to solve the i-th problem.

Limak’s friends organize a New Year’s Eve party and Limak wants to be there at midnight or earlier. He needs k minutes to get there from his house, where he will participate in the contest first.

How many problems can Limak solve if he wants to make it to the party?
Input

The only line of the input contains two integers n and k (1 ≤ n ≤ 10, 1 ≤ k ≤ 240) — the number of the problems in the contest and the number of minutes Limak needs to get to the party from his house.
Output

Print one integer, denoting the maximum possible number of problems Limak can solve so that he could get to the party at midnight or earlier.
Examples
Input

3 222

Output

2

Input

4 190

Output

4

Input

7 1

Output

7

Note

In the first sample, there are 3 problems and Limak needs 222 minutes to get to the party. The three problems require 5, 10 and 15 minutes respectively. Limak can spend 5 + 10 = 15 minutes to solve first two problems. Then, at 20:15 he can leave his house to get to the party at 23:57 (after 222 minutes). In this scenario Limak would solve 2 problems. He doesn’t have enough time to solve 3 problems so the answer is 2.

In the second sample, Limak can solve all 4 problems in 5 + 10 + 15 + 20 = 50 minutes. At 20:50 he will leave the house and go to the party. He will get there exactly at midnight.

In the third sample, Limak needs only 1 minute to get to the party. He has enough time to solve all 7 problems.
题意:该人没办一个问题需要5分钟,解决问题时间加上跑路时间是否能赶上party及i*5+k<=240

#include<stdio.h>
int main()
{
    int n,k,i;
    while(~scanf("%d%d",&n,&k))
    {
        int sum=0;
        k=240-k;
        if(k<0)
        {
            printf("%d\n",0);
            return 0;
        }
        int sum1=0;
        for(i=1; i<=n; i++)
        {
            sum1+=(5*i);
            if(sum1<=k)
                sum++;
            else
                break;
        }
        printf("%d\n",sum);

    }
    return 0;
}
基于html+python+Apriori 算法、SVD(奇异值分解)的电影推荐算法+源码+项目文档+算法解析+数据集,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 电影推荐算法:Apriori 算法、SVD(奇异值分解)推荐算法 电影、用户可视化 电影、用户管理 数据统计 SVD 推荐 根据电影打分进行推荐 使用 svd 模型计算用户对未评分的电影打分,返回前 n 个打分最高的电影作为推荐结果 n = 30 for now 使用相似电影进行推荐 根据用户最喜欢的前 K 部电影,分别计算这 K 部电影的相似电影 n 部,返回 K*n 部电影进行推荐 K = 10 and n = 5 for now 根据相似用户进行推荐 获取相似用户 K 个,分别取这 K 个用户的最喜爱电影 n 部,返回 K*n 部电影进行推荐 K = 10 and n = 5 for now Redis 使用 Redis 做页面访问次数统计 缓存相似电影 在使用相似电影推荐的方式时,每次请求大概需要 6.6s(需要遍历计算与所有电影的相似度)。 将相似电影存储至 redis 中(仅存储 movie_id,拿到 movie_id 后还是从 mysql 中获取电影详细信息), 时间缩短至:93ms。 十部电影,每部存 top 5 similar movie 登录了 1-6 user并使用了推荐系统,redis 中新增了 50 部电影的 similar movie,也就是说,系统只为 6 为用户计算了共 60 部电影的相似度,其中就有10 部重复电影。 热点电影重复度还是比较高的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值