%N是数据一共分多少类
%data是输入的不带分类标号的数据
%u是每一类的中心
%re是返回的带分类标号的数据
function [u re]=KMeans(data,N)
[m n]=size(data); %m是数据个数,n是数据维数
ma=zeros(n); %每一维最大的数
mi=zeros(n); %每一维最小的数
u=zeros(N,n); %随机初始化,最终迭代到每一类的中心位置
for i=1:n
ma(i)=max(data(:,i)); %每一维最大的数
mi(i)=min(data(:,i)); %每一维最小的数
for j=1:N
u(j,i)=ma(i)+(mi(i)-ma(i))*rand(); %随机初始化,不过还是在每一维[min max]中初始化好些
end
end
while 1
pre_u=u; %上一次求得的中心位置
for i=1:N
tmp{i}=[]; % 公式一中的x(i)-uj,为公式一实现做准备
for j=1:m
tmp{i}=[tmp{i};data(j,:)-u(i,:)];
end
end
quan=zeros(m,N);
for i=1:m %公式一的实现
c=[];
for j=1:N
c=[c norm(tmp{j}(i,:))];
end
[junk index]=min(c);
quan(i,index)=norm(tmp{index}(i,:));
end
for i=1:N %公式二的实现
for j=1:n
u(i,j)=sum(quan(:,i).*data(:,j))/sum(quan(:,i));
end
end
if norm(pre_u-u)<0.1 %不断迭代直到位置不再变化
break;
end
end
re=[];
for i=1:m
tmp=[];
for j=1:N
tmp=[tmp norm(data(i,:)-u(j,:))];
end
[junk index]=min(tmp);
re=[re;data(i,:) index];
end
end
K-means算法
最新推荐文章于 2025-03-01 19:55:52 发布