https://vjudge.net/contest/182427#problem/B
Description
Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.
Input
The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 10^9) and m (m < 10^4). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.
Output
Output the elements of S modulo m in the same way as A is given.
Sample Input
2 2 4
0 1
1 1
Sample Output
1 2
2 3
Source
POJ Monthly–2007.06.03, Huang, Jinsong
如果k为偶数,那么(A+A^2+….A^K) = (A+…+A^K/2)+A^K/2*(A+…+A^K/2)
如果k为奇数,那么(A+A^2+….A^K) = (A+…+A^K/2)+A^K/2*(A+…+A^K/2)+A^k
S(k)=A+A^2+……+A^k
偶数: S(k)=S(k/2)+S(k/2)*A^(k/2)
奇数: S(k)=S(k/2)+S(k/2)*A^(k/2)+A^k;
直接用快速幂计算需要O(n)的时间,10^9的数据会超时
通过上面的公式解决超时问题
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std;
int n,k,mod;
struct Matrix
{
int a[35][35];
};
Matrix m,unit;
Matrix add(Matrix x,Matrix y)//矩阵加法
{
Matrix ans;
for(int i=0; i<n; i++)
for(int j=0; j<n; j++)
{
ans.a[i][j]=0;
ans.a[i][j]=(x.a[i][j]+y.a[i][j])%mod;
}
return ans;
}
Matrix multi(Matrix x,Matrix y)//矩阵乘法
{
Matrix ans;
for(int i=0; i<n; i++)
for(int j=0; j<n; j++)
{
ans.a[i][j]=0;
for(int k=0; k<n; k++)
ans.a[i][j]=(ans.a[i][j]+x.a[i][k]*y.a[k][j])%mod;
}
return ans;
}
Matrix mqmod(int l)//快速幂
{
Matrix p,q;
p=m,q=unit;
while(l)
{
if(l&1)q=multi(q,p);
p=multi(p,p);
l>>=1;
}
return q;
}
Matrix matrixsum(int k)//利用公式递归求解
{
if(k==1)return m;
Matrix temp,tnow;
temp=matrixsum(k/2);
tnow=mqmod(k/2);
temp=add(temp,multi(temp,tnow));
if(k&1)//奇数的时候多加上A^k
temp=add(mqmod(k),temp);
return temp;
}
int main()
{
scanf("%d%d%d",&n,&k,&mod);
int q;
for(int i=0; i<n; i++)
for(int j=0; j<n; j++)
{
scanf("%d",&q);
m.a[i][j]=q%mod;
unit.a[i][j]=(i==j);//如果i==j那么矩阵中此值就是1,否则为0,就是主对角线是1的单位矩阵
}
Matrix ans;
ans=matrixsum(k);
for(int i=0; i<n; i++)
{
for(int j=0; j<n-1; j++)
printf("%d ",ans.a[i][j]);
printf("%d\n",ans.a[i][n-1]);
}
return 0;
}