多传感器数据融合技术及其应用
多传感器数据融合概念
数据融合又称作信息融合或多传感器数据融合,对数据融合还很难给出一个统一、全面的定义。随着数据融合和计算机应用技术的发展,根据国内外研究成果,多传感器数据融合比较确切的定义可概括为充分利用不同时间与空间的多传感器数据资源,采用计算机技术对按时间序列获得的多传感器观测数据,在一定准则下进行分析、综合、支配和使用,获得对被测对象的一致性解释与描述,进而实现相应的决策和估计,使系统获得比它的各组成部分更充分的信息。
多传感器数据融合原理
多传感器数据融合技术的基本原理就像人脑综合处理信息一样,充分利用多个传感器资源,通过对多传感器及其观测信息的合理支配和使用,把多传感器在空间或时间上冗余或互补信息依据某种准则来进行组合,以获得被测对象的一致性解释或描述。具体地说,多传感器数据融合原理如下:
1)N个不同类型的传感器(有源或无源的)收集观测目标的数据;
(2)对传感器的输出数据(离散的或连续的时间函数数据、输出矢量、成像数据或一个直接的属性说明)进行特征提取的变换,提取代表观测数据的特征矢量Yi;
(3)对特征矢量Yi进行模式识别处理(如,聚类算法、自适应神经网络或其他能将特征矢量Yi变换成目标属性判决的统计模式识别法等)完成各传感器关于目标的说明;
4)将各传感器关于目标的说明数据按同一目标进行分组,即关联;
(5)利用融合算法将每一目标各传感器数据进行合成,得到该目标的一致性解释与描述。
多传感器数据融合方法
多传感器数据融合的常用方法基本上可概括为随机和人工智能两大类,随机类方法有加权平均法、卡尔曼滤波法、多贝叶斯估计法、Dempster-Shafer(D-S)证据推理、产生式规则等;而人工智能类则有模糊逻辑理论、神经网络、粗集理论、专家系统等。可以预见,神经网络和人工智能等新概念、新技术在多传感器数据融合中将起到越来越重要的作用。
卡尔曼滤波法
卡尔曼滤波主要用于融合低层次实时动态多传感器冗余数据。该方法用测量模型的统计特性递推,决定统计意义下的最优融合和数据估计。如果系统具有线性动力学模型,且系统与传感器的误差符合高斯白噪声模型,则卡尔曼滤波将为融合数据提供唯一统计意义下的最优估计。卡尔曼滤波的递推特性使系统处理不需要大量的数据存储和计算。但是,采用单一的卡尔曼滤波器对多传感器组合系统进行数据统计时,存在很多严重的问题,例如:(1)在组合信息大量冗余的情况下,计算量将以滤波器维数的三次方剧增,实时性不能满足;(2)传感器子系统的增加使故障随之增加,在某一系统出现故障而没有来得及被检测出时,故障会污染整个系统,使可靠性降低。
多贝叶斯估计法
贝叶斯估计为数据融合提供了一种手段,是融合静态环境中多传感器高层信息的常用方法。它使传感器信息依据概率原则进行组合,测量不确定性以条件概率表示,当传感器组的观测坐标一致时,可以直接对传感器的数据进行融合,但大多数情况下,传感器测量数据要以间接方式采用贝叶斯估计进行数据融合。多贝叶斯估计将每一个传感器作为一个贝叶斯估计,将各个单独物体的关联概率分布合成一个联合的后验的概率分布函数,通过使用联合分布函数的似然函数为最小,提供多传感器信息的最终融合值,融合信息与环境的一个先验模型提供整个环境的一个特征描述。
D-S证据推理方法
-S证据推理是贝叶斯推理的扩充,其3个基本要点是:基本概率赋值函数、信任函数和似然函数。D-S方法的推理结构是自上而下的,分三级。第1级为目标合成,其作用是把来自独立传感器的观测结果合成为一个总的输出结果(ID);第2级为推断,其作用是获得传感器的观测结果并进行推断,将传感器观测结果扩展成目标报告。这种推理的基础是:一定的传感器报告以某种可信度在逻辑上会产生可信的某些目标报告;第3级为更新,各种传感器一般都存在随机误差,所以,在时间上充分独立地来自同一传感器的一组连续