大家都用 exgcd 之类的东西搞一点意思都没有。
我来讲讲自己的想法吧,
∵
gcd(a, b) = 1
∴
a^phi(b) = 1 (mod b)
∴
x = a^(phi(b)-1) (mod b)
exgcd这么蛋疼东西我才不会呢!
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <vector>
#include <utility>
#include <stack>
#include <queue>
#include <iostream>
#include <algorithm>
template<class Num>void read(Num &x)
{
char c; int flag = 1;
while((c = getchar()) < '0' || c > '9')
if(c == '-') flag *= -1;
x = c - '0';
while((c = getchar()) >= '0' && c <= '9')
x = (x<<3) + (x<<1) + (c-'0');
x *= flag;
return;
}
template<class Num>void write(Num x)
{
if(!x) {putchar('0');return;}
if(x < 0) putchar('-'), x = -x;
static char s[20];int sl = 0;
while(x) s[sl++] = x%10 + '0',x /= 10;
while(sl) putchar(s[--sl]);
}
long long a, b, phi;
long long power_mod(long long x,int k)
{
long long r = 1;
while(k)
{
if(k&1) r *= x, r %= b;
x *= x, x %= b, k >>= 1;
}
return r;
}
int main()
{
long long t;
read(a), read(b);
t = phi = b;
for(int i = 2; i * i <= b; i++)
{
if(!(t % i))
{
phi /= i, phi *= i - 1;
while(!(t % i)) t /= i;
}
}
if(t != 1) phi /= t, phi *= t - 1;
write(power_mod(a, phi - 1));
return 0;
}