http://blog.youkuaiyun.com/iamskying/article/details/4737920
求解思路:
f(x)=5*x^13+13*x^5+k*a*x;
其中题中"f(x)|65"表示对于任意的整数x,f(x)都能被65整除.所以不难推断:f(x+1)|65也成立.
f(x+1)=5*(x+1)^13+13*(x+1)^5+k*a*(x+1),
根据二项式定理:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)*b+C(n,2)a^(n-2)*b^2+...+C(n,n)b^n
得:f(x+1)=5*(C(13,0)+C(13,1)*x+C(13,2)*x^2+...+C(13,13)*x^13) + 13*(C(5,0)+C(5,1)*x+...+C(5,5)*x^5) + k*a*(x+1);
从中提取出f(x)后得:
f(x+1)=f(x)+5*(C(13,0) + C(13,1)*x+C(13,2)*x^2+...+C(13,12)*x^12) + 13*(C(5,0)+C(5,1)*x+...+C(5,4)*x^4) + k*a;
不难看出出了5*C(13,0) 、13*C(5,0)和k*a三项以外,其他项无论x取任意整数都能被65整除,所以如果5*C(13,0) +13*C(5,0)+k*a(相当于18+k*a)能被65整除的话,就可以得出f(x+1)|65了。
再验证一下f(1)=5+13+k*a=18+k*a同样适用。
所以最终的问题就是给定一个非负整数k,使得(18+k*a)|65,输出满足此条件的最小的非负整数a。
#include<cstdio>
int main()
{
int k,i;
while(scanf("%d",&k)!=EOF)
{
if((k%65)==0)
{
printf("no\n");
continue;
}else
for(i=0;i<65;i++)
if(((i*k+18)%65)==0){
printf("%d\n",i);
break;
}
if(i==65)printf("no\n");
}
return 0;
}