HIVE分析函数和窗口函数

一、SUM,AVG,MIN,MAX
cookieid    createtime      pv 
---------------------------------
cookie1 2015-04-10      1
cookie1 2015-04-11      5
cookie1 2015-04-12      7
cookie1 2015-04-13      3
cookie1 2015-04-14      2
cookie1 2015-04-15      4
cookie1 2015-04-16      4


SELECT cookieid,createtime,pv,
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --从起点到当前行,结果同pv1 
SUM(pv) OVER(PARTITION BY cookieid) AS pv3, --分组内所有行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4,   --当前行+往前3行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5,    --当前行+往前3行+往后1行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6   ---当前行+往后所有行  
FROM lxw1234;


cookieid createtime     pv      pv1     pv2     pv3     pv4     pv5      pv6 
-----------------------------------------------------------------------------
cookie1  2015-04-10      1       1       1       26      1       6       26
cookie1  2015-04-11      5       6       6       26      6       13      25
cookie1  2015-04-12      7       13      13      26      13      16      20
cookie1  2015-04-13      3       16      16      26      16      18      13
cookie1  2015-04-14      2       18      18      26      17      21      10
cookie1  2015-04-15      4       22      22      26      16      20      8
cookie1  2015-04-16      4       26      26      26      13      13      4


ROWS BETWEEN含义,也叫做WINDOW子句
PRECEDING:往前
FOLLOWING:往后
CURRENT ROW:当前行
UNBOUNDED:起点,UNBOUNDED PRECEDING 表示从前面的起点, UNBOUNDED FOLLOWING:表示到后面的终点


–其他AVG,MIN,MAX,和SUM用法一样。




二、NTILE 不支持WINDOW子句
NTILE(n),用于将分组数据按照顺序切分成n片,返回当前切片值
NTILE不支持ROWS BETWEEN,比如 NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW)
如果切片不均匀,默认增加第一个切片的分布


SELECT cookieid,createtime,pv,
NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime) AS rn1, --分组内将数据分成2片
NTILE(3) OVER(PARTITION BY cookieid ORDER BY createtime) AS rn2,  --分组内将数据分成3片
NTILE(4) OVER(ORDER BY createtime) AS rn3        --将所有数据分成4片
FROM lxw1234 ORDER BY cookieid,createtime;


cookieid createtime     pv       rn1     rn2     rn3
-------------------------------------------------
cookie1 2015-04-10      1       1       1       1
cookie1 2015-04-11      5       1       1       1
cookie1 2015-04-12      7       1       1       1
cookie1 2015-04-13      3       1       2       1
cookie1 2015-04-14      2       2       2       2
cookie1 2015-04-15      4       2       3       2
cookie1 2015-04-16      4       2       3       2
cookie2 2015-04-10      2       1       1       2
cookie2 2015-04-11      3       1       1       3
cookie2 2015-04-12      5       1       1       3
cookie2 2015-04-13      6       1       2       3
cookie2 2015-04-14      3       2       2       3
cookie2 2015-04-15      9       2       3       4
cookie2 2015-04-16      7       2       3       4


–比如,统计一个cookie,pv数最多的前1/3的天
SELECT cookieid,createtime,pv,
NTILE(3) OVER(PARTITION BY cookieid ORDER BY pv DESC) AS rn 
FROM lxw1234 rn = 1;




三、ROW_NUMBER 不支持WINDOW子句
ROW_NUMBER() –从1开始,按照顺序,生成分组内记录的序列,比如,按照pv降序排列,生成分组内每天的pv名次
ROW_NUMBER() 的应用场景非常多,再比如,获取分组内排序第一的记录;获取一个session中的第一条refer等。


SELECT cookieid,createtime,pv,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn 
FROM lxw1234;
 
cookieid createtime     pv       rn
------------------------------------------- 
cookie1 2015-04-12      7       1
cookie1 2015-04-11      5       2
cookie1 2015-04-15      4       3
cookie1 2015-04-16      4       4
cookie1 2015-04-13      3       5
cookie1 2015-04-14      2       6
cookie1 2015-04-10      1       7
cookie2 2015-04-15      9       1
cookie2 2015-04-16      7       2
cookie2 2015-04-13      6       3
cookie2 2015-04-12      5       4
cookie2 2015-04-14      3       5
cookie2 2015-04-11      3       6
cookie2 2015-04-10      2       7




四、RANK 和 DENSE_RANK 不支持WINDOW子句
—RANK() 生成数据项在分组中的排名,排名相等会在名次中留下空位
—DENSE_RANK() 生成数据项在分组中的排名,排名相等会在名次中不会留下空位


SELECT cookieid,createtime,pv,
RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn1,
DENSE_RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn2,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv DESC) AS rn3 
FROM lxw1234 WHERE cookieid = 'cookie1';
 
cookieid createtime     pv       rn1     rn2     rn3 
-------------------------------------------------- 
cookie1 2015-04-12      7       1       1       1
cookie1 2015-04-11      5       2       2       2
cookie1 2015-04-15      4       3       3       3
cookie1 2015-04-16      4       3       3       4
cookie1 2015-04-13      3       5       4       5
cookie1 2015-04-14      2       6       5       6
cookie1 2015-04-10      1       7       6       7
 
rn1: 15号和16号并列第3, 13号排第5
rn2: 15号和16号并列第3, 13号排第4
rn3: 如果相等,则按记录值排序,生成唯一的次序,如果所有记录值都相等,或许会随机排吧。




五、CUME_DIST 不支持WINDOW子句
–CUME_DIST (小于等于当前值的行数)/(分组内总行数)
–比如,统计小于等于当前薪水的人数,所占总人数的比例
SELECT dept,userid,sal,
CUME_DIST() OVER(ORDER BY sal) AS rn1,
CUME_DIST() OVER(PARTITION BY dept ORDER BY sal) AS rn2 
FROM lxw1234;
 
dept    userid   sal   rn1       rn2 
-------------------------------------------
d1      user1   1000    0.2     0.3333333333333333
d1      user2   2000    0.4     0.6666666666666666
d1      user3   3000    0.6     1.0
d2      user4   4000    0.8     0.5
d2      user5   5000    1.0     1.0
 
rn1: 没有partition,所有数据均为1组,总行数为5,
     第一行:小于等于1000的行数为1,因此,1/5=0.2
     第三行:小于等于3000的行数为3,因此,3/5=0.6
rn2: 按照部门分组,dpet=d1的行数为3,
     第二行:小于等于2000的行数为2,因此,2/3=0.6666666666666666




六、PERCENT_RANK 不支持WINDOW子句
–PERCENT_RANK 分组内当前行的RANK值-1/分组内总行数-1
应用场景不了解,可能在一些特殊算法的实现中可以用到吧。
SELECT dept,userid,sal,
PERCENT_RANK() OVER(ORDER BY sal) AS rn1,   --分组内
RANK() OVER(ORDER BY sal) AS rn11,          --分组内RANK值
SUM(1) OVER(PARTITION BY NULL) AS rn12,     --分组内总行数
PERCENT_RANK() OVER(PARTITION BY dept ORDER BY sal) AS rn2 
FROM lxw1234;
 
dept    userid   sal    rn1    rn11     rn12    rn2
---------------------------------------------------
d1      user1   1000    0.0     1       5       0.0
d1      user2   2000    0.25    2       5       0.5
d1      user3   3000    0.5     3       5       1.0
d2      user4   4000    0.75    4       5       0.0
d2      user5   5000    1.0     5       5       1.0
 
rn1: rn1 = (rn11-1) / (rn12-1) 
   第一行,(1-1)/(5-1)=0/4=0
   第二行,(2-1)/(5-1)=1/4=0.25
   第四行,(4-1)/(5-1)=3/4=0.75
rn2: 按照dept分组,
     dept=d1的总行数为3
     第一行,(1-1)/(3-1)=0
     第三行,(3-1)/(3-1)=1


 
七、LAG 不支持WINDOW子句
LAG(col,n,DEFAULT) 用于统计窗口内往上第n行值
第一个参数为列名,第二个参数为往上第n行(可选,默认为1),第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)


SELECT cookieid,createtime,url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
LAG(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY createtime) AS last_1_time,
LAG(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS last_2_time 
FROM lxw1234;
 
cookieid createtime             url    rn       last_1_time             last_2_time
-------------------------------------------------------------------------------------------
cookie1 2015-04-10 10:00:00     url1    1       1970-01-01 00:00:00     NULL
cookie1 2015-04-10 10:00:02     url2    2       2015-04-10 10:00:00     NULL
cookie1 2015-04-10 10:03:04     1url3   3       2015-04-10 10:00:02     2015-04-10 10:00:00
cookie1 2015-04-10 10:10:00     url4    4       2015-04-10 10:03:04     2015-04-10 10:00:02
cookie1 2015-04-10 10:50:01     url5    5       2015-04-10 10:10:00     2015-04-10 10:03:04
cookie1 2015-04-10 10:50:05     url6    6       2015-04-10 10:50:01     2015-04-10 10:10:00
cookie1 2015-04-10 11:00:00     url7    7       2015-04-10 10:50:05     2015-04-10 10:50:01
cookie2 2015-04-10 10:00:00     url11   1       1970-01-01 00:00:00     NULL
cookie2 2015-04-10 10:00:02     url22   2       2015-04-10 10:00:00     NULL
cookie2 2015-04-10 10:03:04     1url33  3       2015-04-10 10:00:02     2015-04-10 10:00:00
cookie2 2015-04-10 10:10:00     url44   4       2015-04-10 10:03:04     2015-04-10 10:00:02
cookie2 2015-04-10 10:50:01     url55   5       2015-04-10 10:10:00     2015-04-10 10:03:04
cookie2 2015-04-10 10:50:05     url66   6       2015-04-10 10:50:01     2015-04-10 10:10:00
cookie2 2015-04-10 11:00:00     url77   7       2015-04-10 10:50:05     2015-04-10 10:50:01
 
last_1_time: 指定了往上第1行的值,default为'1970-01-01 00:00:00'  
             cookie1第一行,往上1行为NULL,因此取默认值 1970-01-01 00:00:00
             cookie1第三行,往上1行值为第二行值,2015-04-10 10:00:02
             cookie1第六行,往上1行值为第五行值,2015-04-10 10:50:01
last_2_time: 指定了往上第2行的值,为指定默认值
cookie1第一行,往上2行为NULL
cookie1第二行,往上2行为NULL
cookie1第四行,往上2行为第二行值,2015-04-10 10:00:02
cookie1第七行,往上2行为第五行值,2015-04-10 10:50:01


 
八、LEAD 不支持WINDOW子句
与LAG相反
LEAD(col,n,DEFAULT) 用于统计窗口内往下第n行值
第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL)


SELECT cookieid,createtime,url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
LEAD(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY createtime) AS next_1_time,
LEAD(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS next_2_time 
FROM lxw1234;
  
cookieid createtime             url    rn       next_1_time             next_2_time 
-------------------------------------------------------------------------------------------
cookie1 2015-04-10 10:00:00     url1    1       2015-04-10 10:00:02     2015-04-10 10:03:04
cookie1 2015-04-10 10:00:02     url2    2       2015-04-10 10:03:04     2015-04-10 10:10:00
cookie1 2015-04-10 10:03:04     1url3   3       2015-04-10 10:10:00     2015-04-10 10:50:01
cookie1 2015-04-10 10:10:00     url4    4       2015-04-10 10:50:01     2015-04-10 10:50:05
cookie1 2015-04-10 10:50:01     url5    5       2015-04-10 10:50:05     2015-04-10 11:00:00
cookie1 2015-04-10 10:50:05     url6    6       2015-04-10 11:00:00     NULL
cookie1 2015-04-10 11:00:00     url7    7       1970-01-01 00:00:00     NULL
cookie2 2015-04-10 10:00:00     url11   1       2015-04-10 10:00:02     2015-04-10 10:03:04
cookie2 2015-04-10 10:00:02     url22   2       2015-04-10 10:03:04     2015-04-10 10:10:00
cookie2 2015-04-10 10:03:04     1url33  3       2015-04-10 10:10:00     2015-04-10 10:50:01
cookie2 2015-04-10 10:10:00     url44   4       2015-04-10 10:50:01     2015-04-10 10:50:05
cookie2 2015-04-10 10:50:01     url55   5       2015-04-10 10:50:05     2015-04-10 11:00:00
cookie2 2015-04-10 10:50:05     url66   6       2015-04-10 11:00:00     NULL
cookie2 2015-04-10 11:00:00     url77   7       1970-01-01 00:00:00     NULL


--逻辑与LAG一样,只不过LAG是往上,LEAD是往下。




九、FIRST_VALUE 不支持WINDOW子句
取分组内排序后,截止到当前行,第一个值
SELECT cookieid,createtime,url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS first1 
FROM lxw1234;
 
cookieid  createtime            url     rn      first1
---------------------------------------------------------
cookie1 2015-04-10 10:00:00     url1    1       url1
cookie1 2015-04-10 10:00:02     url2    2       url1
cookie1 2015-04-10 10:03:04     1url3   3       url1
cookie1 2015-04-10 10:10:00     url4    4       url1
cookie1 2015-04-10 10:50:01     url5    5       url1
cookie1 2015-04-10 10:50:05     url6    6       url1
cookie1 2015-04-10 11:00:00     url7    7       url1
cookie2 2015-04-10 10:00:00     url11   1       url11
cookie2 2015-04-10 10:00:02     url22   2       url11
cookie2 2015-04-10 10:03:04     1url33  3       url11
cookie2 2015-04-10 10:10:00     url44   4       url11
cookie2 2015-04-10 10:50:01     url55   5       url11
cookie2 2015-04-10 10:50:05     url66   6       url11
cookie2 2015-04-10 11:00:00     url77   7       url11




十、LAST_VALUE 不支持WINDOW子句
取分组内排序后,截止到当前行,最后一个值
SELECT cookieid,createtime,url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
LAST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS last1,
FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime DESC) AS last2 
FROM lxw1234 
ORDER BY cookieid,createtime;
 
cookieid  createtime            url     rn     last1    last2
-------------------------------------------------------------
cookie1 2015-04-10 10:00:00     url1    1       url1    url7
cookie1 2015-04-10 10:00:02     url2    2       url2    url7
cookie1 2015-04-10 10:03:04     1url3   3       1url3   url7
cookie1 2015-04-10 10:10:00     url4    4       url4    url7
cookie1 2015-04-10 10:50:01     url5    5       url5    url7
cookie1 2015-04-10 10:50:05     url6    6       url6    url7
cookie1 2015-04-10 11:00:00     url7    7       url7    url7
cookie2 2015-04-10 10:00:00     url11   1       url11   url77
cookie2 2015-04-10 10:00:02     url22   2       url22   url77
cookie2 2015-04-10 10:03:04     1url33  3       1url33  url77
cookie2 2015-04-10 10:10:00     url44   4       url44   url77
cookie2 2015-04-10 10:50:01     url55   5       url55   url77
cookie2 2015-04-10 10:50:05     url66   6       url66   url77
cookie2 2015-04-10 11:00:00     url77   7       url77   url77




十一、GROUPING SETS
在一个GROUP BY查询中,根据不同的维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行UNION ALL
SELECT month,day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID 
FROM lxw1234 
GROUP BY month,day 
GROUPING SETS (month,day,(month,day)) 
ORDER BY GROUPING__ID;
 
month         day             uv      GROUPING__ID
------------------------------------------------
2015-03       NULL            5       1
2015-04       NULL            6       1
NULL          2015-03-10      4       2
NULL          2015-03-12      1       2
NULL          2015-04-12      2       2
NULL          2015-04-13      3       2
NULL          2015-04-15      2       2
NULL          2015-04-16      2       2
2015-03       2015-03-10      4       3
2015-03       2015-03-12      1       3
2015-04       2015-04-12      2       3
2015-04       2015-04-13      3       3
2015-04       2015-04-15      2       3
2015-04       2015-04-16      2       3
  
等价于
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month 
UNION ALL 
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day
UNION ALL 
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM lxw1234 GROUP BY month,day


其中的 GROUPING__ID,表示结果属于哪一个分组集合。




十二、CUBE
根据GROUP BY的维度的所有组合进行聚合。
SELECT month,day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID 
FROM lxw1234 
GROUP BY month,day 
WITH CUBE 
ORDER BY GROUPING__ID; 
 
month      day             uv     GROUPING__ID
--------------------------------------------
NULL            NULL            7       0
2015-03         NULL            5       1
2015-04         NULL            6       1
NULL            2015-04-12      2       2
NULL            2015-04-13      3       2
NULL            2015-04-15      2       2
NULL            2015-04-16      2       2
NULL            2015-03-10      4       2
NULL            2015-03-12      1       2
2015-03         2015-03-10      4       3
2015-03         2015-03-12      1       3
2015-04         2015-04-16      2       3
2015-04         2015-04-12      2       3
2015-04         2015-04-13      3       3
2015-04         2015-04-15      2       3
  
等价于
SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS uv,0 AS GROUPING__ID FROM lxw1234
UNION ALL 
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month 
UNION ALL 
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day
UNION ALL 
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM lxw1234 GROUP BY month,day




十三、ROLLUP
是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合。比如,以month维度进行层级聚合:
SELECT month,day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID  
FROM lxw1234 
GROUP BY month,day
WITH ROLLUP 
ORDER BY GROUPING__ID;
 
month      day             uv     GROUPING__ID
---------------------------------------------------
NULL             NULL            7       0
2015-03          NULL            5       1
2015-04          NULL            6       1
2015-03          2015-03-10      4       3
2015-03          2015-03-12      1       3
2015-04          2015-04-12      2       3
2015-04          2015-04-13      3       3
2015-04          2015-04-15      2       3
2015-04          2015-04-16      2       3
 
可以实现这样的上钻过程:
月天的UV->月的UV->总UV
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值