1.综述
我们讨论面试中各大厂的SQL算法面试题,往往核心考点就在于窗口函数,所以掌握好了窗口函数,面对SQL算法面试往往事半功倍。
已更新第一类聚合函数类,点击这里阅读 hive窗口函数聚合函数类
本节介绍Hive聚合函数中的第二类聚合函数:分组排序窗口函数。
这些函数的用法不仅仅适用于Hive,对于很多数数据库来说同样也适用,比如SparkSQL,FlinkSQL以及Mysql8,Oracle,MSSQL等传统的关系型数据库。
如果论使用的广泛性,hive窗口函数中我们使用最广泛的就是排序类窗口函数,我们通常一提起窗口函数,想到的就是这类排序类窗口函数,它在我们进行数据去重中扮演了至关重要的角色。
1.1 Hive窗口函数分类
Hive提供的窗口函数可以分为一下几类
- 聚合函数类
count() over();
sum() over();
max() over();
min() over();
avg() over();
- 分组排序类
row_number() over();
rank() over();
dense_rank() over();
percent_rank() over();
cume_dist() over();
ntile() over();
- 求偏移量类
lead() over();
lag() over();
first_value() over();
1.2 分析函数语法
分析函数 over(partition by 列名 order by 列名 rows between 开始位置 and 结束位置)
具体解析
over()
括号内为空时,是直接进行计算。
其中partition by 列名
是按指定列进行分组,进而进行计算。
最后的order by 列名
是按照指定列进行排序,进而进行计算。
1.3 基础数据准备
create table if not exists temp.user_info (
`id` bigint comment '用户id',
`client