在多智能体强化学习(Multi-Agent Reinforcement Learning, MARL)领域,集中批评学习(Centralized Critic Learning)是一种有效的方法,用于解决多个智能体在共享环境中协同工作的挑战。集中批评学习通过集中化的价值估计,增强了智能体间的协作与协调能力。下面简要地讲解四种典型的集中批评学习算法:
COMA(Counterfactual Multi-Agent Policy Gradients)
MADDPG(Multi-Agent Deep Deterministic Policy Gradient)
MAPPO(Multi-Agent Proximal Policy Optimization)
HATRPO(Hierarchical Trust Region Policy Optimization)