roblem 1: Subset I
Given a set of distinct integers, S, return all possible subsets.
Note: Elements in a subset must be in non-descending order. The solution set must not contain duplicate subsets.
For example, If S = [1,2,3], a solution is: [ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ]
大集合记录向量vector<vector<> > res;
小集合记录向量vector<> tmp;
为保证不出现重复数组,加一个位置指标。pos.
pos表示该子集的起点,即从哪开始。某层用了i,下层用除此之外,从i+1开始。
循环回到该层时。去掉该层添加的该元素
class Solution {
public:
vector<vector<int> > subsets(vector<int>& nums) {
vector<vector<int> > res;
vector<int> tmp;
//注意与arraylist的区别。别new vector<int>();
sort(nums.begin(),nums.end());
res.push_back(tmp);
dfs(res,tmp,nums,0);
return res;
}
void dfs(vector<vector<int>> &res,vector<int> &tmp,vector<int>& nums,int pos)
{
for(int i=pos;i<nums.size();i++)
{
tmp.push_back(nums[i]);
res.push_back(tmp);
dfs(res,tmp,nums,i+1);
tmp.pop_back();
//注意vector的成员函数:
}
}
};
位排列解法
class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
//先排序
sort(nums.begin(),nums.end());
int elem_size=nums.size();
int subset_size=pow(2,elem_size);
vector<vector<int>> subset_set(subset_size,vector<int>());
for(int i=0;i<elem_size;i++)
for(int j=0;j<subset_size;j++)
if((j>>i)&1)
subset_set[j].push_back(nums[i]);
return subset_set;
}
};
This is an amazing solution.Learnt a lot.Let me try to explain this to those who didn't get the logic.
Number of subsets for {1 , 2 , 3 } = 2^3 .
why ?
case possible outcomes for the set of subsets
1 -> Take or dont take = 2
2 -> Take or dont take = 2
3 -> Take or dont take = 2
therefore , total = 2*2*2 = 2^3 = { { } , {1} , {2} , {3} , {1,2} , {1,3} , {2,3} , {1,2,3} }
Lets assign bits to each outcome -> First bit to 1 , Second bit to 2 and third bit to 3
Take = 1
Dont take = 0
0) 0 0 0 -> Dont take 3 , Dont take 2 , Dont take 1 = { }
1) 0 0 1 -> Dont take 3 , Dont take 2 , take 1 = {1 }
2) 0 1 0 -> Dont take 3 , take 2 , Dont take 1 = { 2 }
3) 0 1 1 -> Dont take 3 , take 2 , take 1 = { 1 , 2 }
4) 1 0 0 -> take 3 , Dont take 2 , Dont take 1 = { 3 }
5) 1 0 1 -> take 3 , Dont take 2 , take 1 = { 1 , 3 }
6) 1 1 0 -> take 3 , take 2 , Dont take 1 = { 2 , 3 }
7) 1 1 1 -> take 3 , take 2 , take 1 = { 1 , 2 , 3 }
In the above logic ,Insert S[i] only if (j>>i)&1 ==true { j E { 0,1,2,3,4,5,6,7 } i = ith element in the input array }
element 1 is inserted only into those places where 1st bit of j is 1
if( j >> 0 &1 ) ==> for above above eg. this is true for sl.no.( j )= 1 , 3 , 5 , 7
element 2 is inserted only into those places where 2nd bit of j is 1
if( j >> 1 &1 ) == for above above eg. this is true for sl.no.( j ) = 2 , 3 , 6 , 7
element 3 is inserted only into those places where 3rd bit of j is 1
if( j >> 2 & 1 ) == for above above eg. this is true for sl.no.( j ) = 4 , 5 , 6 , 7
Time complexity : O(n*2^n) , for every input element loop traverses the whole solution set length i.e. 2^n