1、LoG边缘检测算子
LoG(高斯拉普拉斯函数)边缘检测算子是DavidCourtnay Marr和Ellen Hildreth(1980)共同提出的[1] 。因此,也称为边缘检测算法或Marr & Hildreth算子。该算法首先对图像做高斯滤波,然后再求其拉普拉斯(Laplacian)二阶导数。即图像与Laplacian of the Gaussian function 进行滤波运算。最后,通过检测滤波结果的零交叉(Zero crossings)可以获得图像或物体的边缘。因而,也被业界简称为Laplacian-of-Gaussian(LoG)算子。
Marr和Hildreth论证过,满足这些条件最令人满意得到算子是滤波器。,是拉普拉斯算子,
而G是标准差为(有时也称为空间常数)的二维高斯函数:
.
经过计算
,
称为高斯拉普拉斯(LoG).
LoG的零交叉出现在处,它定义了一个中心位于原点,
半径为的圆。
LoG函数有时也称为墨西哥草帽算子。一个正的中心项由紧邻的负区域包围着,中心项的值以距原点的距离为函数而增大,
而外层区域的值零。系数之和必须为零,从而模板的响应在恒定灰度区域为零。
2、Prewitt算子
Prewitt算子是一种一阶微分算子的边缘检测,利用像素点上下、左右邻点的灰度差,在边缘处达到极值检测边缘,去掉部分伪边缘,对噪声具有平滑作用。其原理是在图像空间利用两个方向模板与图像进行邻域卷积来完成的,这两个方向模板一个检测水平边缘,一个检测垂直边缘。
对数字图像f(x,y),Prewitt算子的定义如下:
G(i)=|[f(i-1,j-1)+f(i-1,j)+f(i-1,j+1)]-[f(i+1,j-1)+f(i+1,j)+f(i+1,j+1)]|
G(j)=|[f(i-1,j+1)+f(i,j+1)+f(i+1,j+1)]-[f(i-1,j-1)+f(i,j-1)+f(i+1,j-1)]|
则 P(i,j)=max[G(i),G(j)]或P(i,j)=G(i)+G(j)
经典Prewitt算子认为:凡灰度新值大于或等于阈值的像素点都是边缘点。即选择适当的阈值T,若P(i,j)≥T,则(i,j)为边缘点,P(i,j)为边缘图像。这种判定是欠合理的,会造成边缘点的误判,因为许多噪声点的