任何一个整数都可以写成质因数成绩的形式:
10 = 2 * 5
21 = 3 * 7
23 = 1 * 23
。。。
所以n! = 2^n1 * 3^n2 * 5^n3 *.....
其中有可能在最后产生0的,只有2 和 5相乘了,因为n1 远大于 n3,所以n3的大小就是n!最后0的个数
求n3的方法:
int ret = 0;
while (N > 0)
{
ret += N / 5;
N /= 5;
}
return ret;
任何一个整数都可以写成质因数成绩的形式:
10 = 2 * 5
21 = 3 * 7
23 = 1 * 23
。。。
所以n! = 2^n1 * 3^n2 * 5^n3 *.....
其中有可能在最后产生0的,只有2 和 5相乘了,因为n1 远大于 n3,所以n3的大小就是n!最后0的个数
求n3的方法:
int ret = 0;
while (N > 0)
{
ret += N / 5;
N /= 5;
}
return ret;
您可能感兴趣的与本文相关的镜像
Dify
Dify 是一款开源的大语言模型(LLM)应用开发平台,它结合了 后端即服务(Backend as a Service) 和LLMOps 的理念,让开发者能快速、高效地构建和部署生产级的生成式AI应用。 它提供了包含模型兼容支持、Prompt 编排界面、RAG 引擎、Agent 框架、工作流编排等核心技术栈,并且提供了易用的界面和API,让技术和非技术人员都能参与到AI应用的开发过程中
313
2915

被折叠的 条评论
为什么被折叠?