Tensorflow实战之下载MNIST数据,自动分成train, validation和test三个数据集

本书章节介绍如何使用TensorFlow自动下载并划分MNIST数据集为训练、验证和测试集。通过Python代码演示,展示了数据集的具体大小及首个训练样本的数据与标签,为深度学习模型训练提供数据准备。
部署运行你感兴趣的模型镜像

TensorFlow 实战Google深度学习框架 第2版 ,郑泽宇之P96。下载MNIST数据,自动分成train, validation和test三个数据集,源码如下:

#!/usr/bin/env python
import os
from tensorflow.examples.tutorials.mnist import input_data
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

mnist = input_data.read_data_sets("MNIST_data", one_hot=True)

print("Training data size:\t", mnist.train.num_examples)
print("Validating data size:\t", mnist.validation.num_examples)
print("Testing data size:\t", mnist.test.num_examples)
print("Example training data:\t", mnist.train.images[0])
print("Example training data label:\t", mnist.train.labels[0])

运行结果如下:

"C:\Program Files\Python\Python37\python.exe" "D:/Pycharm Projects/MLDemo/MLDemo.py"
Extracting MNIST_data\train-labels-idx1-ubyte.gz
Extracting MNIST_data\t10k-images-idx3-ubyte.gz
Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
Training data size:	 55000
Validating data size:	 5000
Testing data size:	 10000
Example training data:	 [0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.3803922  0.37647063 0.3019608
 0.46274513 0.2392157  0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.3529412
 0.5411765  0.9215687  0.9215687  0.9215687  0.9215687  0.9215687
 0.9215687  0.9843138  0.9843138  0.9725491  0.9960785  0.9607844
 0.9215687  0.74509805 0.08235294 0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.54901963 0.9843138  0.9960785  0.9960785
 0.9960785  0.9960785  0.9960785  0.9960785  0.9960785  0.9960785
 0.9960785  0.9960785  0.9960785  0.9960785  0.9960785  0.9960785
 0.7411765  0.09019608 0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.8862746  0.9960785  0.81568635 0.7803922  0.7803922  0.7803922
 0.7803922  0.54509807 0.2392157  0.2392157  0.2392157  0.2392157
 0.2392157  0.5019608  0.8705883  0.9960785  0.9960785  0.7411765
 0.08235294 0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.14901961 0.32156864
 0.0509804  0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.13333334 0.8352942  0.9960785  0.9960785  0.45098042 0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.32941177
 0.9960785  0.9960785  0.9176471  0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.32941177 0.9960785  0.9960785
 0.9176471  0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.4156863  0.6156863  0.9960785  0.9960785  0.95294124 0.20000002
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.09803922
 0.45882356 0.8941177  0.8941177  0.8941177  0.9921569  0.9960785
 0.9960785  0.9960785  0.9960785  0.94117653 0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.26666668 0.4666667  0.86274517 0.9960785  0.9960785
 0.9960785  0.9960785  0.9960785  0.9960785  0.9960785  0.9960785
 0.9960785  0.5568628  0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.14509805 0.73333335 0.9921569
 0.9960785  0.9960785  0.9960785  0.8745099  0.8078432  0.8078432
 0.29411766 0.26666668 0.8431373  0.9960785  0.9960785  0.45882356
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.4431373  0.8588236  0.9960785  0.9490197  0.89019614 0.45098042
 0.34901962 0.12156864 0.         0.         0.         0.
 0.7843138  0.9960785  0.9450981  0.16078432 0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.6627451  0.9960785
 0.6901961  0.24313727 0.         0.         0.         0.
 0.         0.         0.         0.18823531 0.9058824  0.9960785
 0.9176471  0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.07058824 0.48627454 0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.32941177 0.9960785  0.9960785  0.6509804  0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.54509807
 0.9960785  0.9333334  0.22352943 0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.8235295  0.9803922  0.9960785  0.65882355
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.9490197  0.9960785  0.93725497 0.22352943 0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.34901962 0.9843138  0.9450981
 0.3372549  0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.01960784 0.8078432  0.96470594 0.6156863  0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.01568628 0.45882356
 0.27058825 0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.        ]
Example training data label:	 [0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]

Process finished with exit code 0

 

您可能感兴趣的与本文相关的镜像

Python3.11

Python3.11

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值