TensorFlow 实战Google深度学习框架 第2版 ,郑泽宇之P96。下载MNIST数据,自动分成train, validation和test三个数据集,源码如下:
#!/usr/bin/env python
import os
from tensorflow.examples.tutorials.mnist import input_data
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
print("Training data size:\t", mnist.train.num_examples)
print("Validating data size:\t", mnist.validation.num_examples)
print("Testing data size:\t", mnist.test.num_examples)
print("Example training data:\t", mnist.train.images[0])
print("Example training data label:\t", mnist.train.labels[0])
运行结果如下:
"C:\Program Files\Python\Python37\python.exe" "D:/Pycharm Projects/MLDemo/MLDemo.py"
Extracting MNIST_data\train-labels-idx1-ubyte.gz
Extracting MNIST_data\t10k-images-idx3-ubyte.gz
Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
Training data size: 55000
Validating data size: 5000
Testing data size: 10000
Example training data: [0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0.3803922 0.37647063 0.3019608
0.46274513 0.2392157 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.3529412
0.5411765 0.9215687 0.9215687 0.9215687 0.9215687 0.9215687
0.9215687 0.9843138 0.9843138 0.9725491 0.9960785 0.9607844
0.9215687 0.74509805 0.08235294 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0.54901963 0.9843138 0.9960785 0.9960785
0.9960785 0.9960785 0.9960785 0.9960785 0.9960785 0.9960785
0.9960785 0.9960785 0.9960785 0.9960785 0.9960785 0.9960785
0.7411765 0.09019608 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0.8862746 0.9960785 0.81568635 0.7803922 0.7803922 0.7803922
0.7803922 0.54509807 0.2392157 0.2392157 0.2392157 0.2392157
0.2392157 0.5019608 0.8705883 0.9960785 0.9960785 0.7411765
0.08235294 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.14901961 0.32156864
0.0509804 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0.13333334 0.8352942 0.9960785 0.9960785 0.45098042 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.32941177
0.9960785 0.9960785 0.9176471 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0.32941177 0.9960785 0.9960785
0.9176471 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0.4156863 0.6156863 0.9960785 0.9960785 0.95294124 0.20000002
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.09803922
0.45882356 0.8941177 0.8941177 0.8941177 0.9921569 0.9960785
0.9960785 0.9960785 0.9960785 0.94117653 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0.26666668 0.4666667 0.86274517 0.9960785 0.9960785
0.9960785 0.9960785 0.9960785 0.9960785 0.9960785 0.9960785
0.9960785 0.5568628 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0.14509805 0.73333335 0.9921569
0.9960785 0.9960785 0.9960785 0.8745099 0.8078432 0.8078432
0.29411766 0.26666668 0.8431373 0.9960785 0.9960785 0.45882356
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0.4431373 0.8588236 0.9960785 0.9490197 0.89019614 0.45098042
0.34901962 0.12156864 0. 0. 0. 0.
0.7843138 0.9960785 0.9450981 0.16078432 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.6627451 0.9960785
0.6901961 0.24313727 0. 0. 0. 0.
0. 0. 0. 0.18823531 0.9058824 0.9960785
0.9176471 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0.07058824 0.48627454 0. 0.
0. 0. 0. 0. 0. 0.
0. 0.32941177 0.9960785 0.9960785 0.6509804 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.54509807
0.9960785 0.9333334 0.22352943 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0.8235295 0.9803922 0.9960785 0.65882355
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0.9490197 0.9960785 0.93725497 0.22352943 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0.34901962 0.9843138 0.9450981
0.3372549 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0.01960784 0.8078432 0.96470594 0.6156863 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.01568628 0.45882356
0.27058825 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. ]
Example training data label: [0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]
Process finished with exit code 0
本书章节介绍如何使用TensorFlow自动下载并划分MNIST数据集为训练、验证和测试集。通过Python代码演示,展示了数据集的具体大小及首个训练样本的数据与标签,为深度学习模型训练提供数据准备。
589

被折叠的 条评论
为什么被折叠?



