二分图+染色

There are a group of students. Some of them may know each other, while others don’t. For example, A and B know each other, B and C know each other. But this may not imply that A and C know each other.

Now you are given all pairs of students who know each other. Your task is to divide the students into two groups so that any two students in the same group don’t know each other.If this goal can be achieved, then arrange them into double rooms. Remember, only paris appearing in the previous given set can live in the same room, which means only known students can live in the same room.

Calculate the maximum number of pairs that can be arranged into these double rooms.
Input
For each data set:
The first line gives two integers, n and m(1<n<=200), indicating there are n students and m pairs of students who know each other. The next m lines give such pairs.

Proceed to the end of file.

Output
If these students cannot be divided into two groups, print “No”. Otherwise, print the maximum number of pairs that can be arranged in those rooms.
Sample Input

4 4
1 2
1 3
1 4
2 3
6 5
1 2
1 3
1 4
2 5
3 6

Sample Output

No
3
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
const int maxn=205;
int n,m,flag;
int mp[maxn][maxn],vis[maxn],book[maxn],dis[maxn];
void dfs(int x,int clore)
{
	if(vis[x]==0)//没有被染色时
	vis[x]=clore;
	if(flag==1) return ;//不能用二分图表示,回溯
	for(int i=1;i<=n;i++)
	{
		if(mp[x][i]==1)//有关系
		{
			if(vis[i]==0)//没有被染色
			{
				vis[i]=-clore;//染色
				dfs(i,vis[i]);//搜索,判断是否构成了环
			}
			if(vis[i]==vis[x])//如果染色相同说明构成了环,结束
			{
				flag=1;
				return ;//回溯
			}
		}
	}
	return ;
}
bool hungry(int x)
{
	for(int i=1;i<=n;i++)
	{
		if(book[i]==0&&mp[x][i])
		{
			book[i]=1;
			if(dis[i]==-1||hungry(dis[i]))
			{
				dis[i]=x;
				return 1;
			}
		}
	}
	return false;
}
int main()
{
	while(~scanf("%d%d",&n,&m)&&(n+m))
	{
		flag=0;
		memset(mp,0,sizeof(mp)); 
		memset(vis,0,sizeof(vis));
		for(int i=1;i<=m;i++)
		{
			int x,y;
			scanf("%d%d",&x,&y);
			mp[x][y]=mp[y][x]=1;
		}
		dfs(1,1);
		if(flag)
		{
			printf("No\n");
			continue;
		}
		else 
		{
			int ans=0;
			memset(dis,-1,sizeof(dis));
			for(int i=1;i<=n;i++)
			{
				memset(book,0,sizeof(book));
				if(hungry(i)) ans++;
			}
			printf("%d\n",ans/2);
		}
	}
}
基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值