#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef unsigned long long ULL;
ULL a[555];
ULL b[555];
ULL gcd(ULL x, ULL y){
return y?gcd(y,x%y):x;
}
/**
手算多项式分解
把原题变为(x^1+x^2+x^3+x^4+x^5+x^6)^n 求指数大于等于x的项数的系数之和
**/
int main()
{
// freopen("data.in", "r", stdin);
int n, x;
ULL ans1, ans2;
while(scanf("%d%d", &n, &x) != EOF && n+x){
memset(a, 0 ,sizeof a);
for(int i = 1; i <= 6; i++)
a[i] = 1;
for(int k = 1; k < n; k++){
memset(b, 0, sizeof b);
for(int i = k; i <= 6*k; i++){
for(int j = 1; j <= 6; j++){
b[i+j] += a[i];
}
}
memcpy(a, b, sizeof b);
}
ans1 = ans2 = 0;
for(int i = 0; i <= n*6; i++){
if(i >= x) ans1 += a[i];
ans2 += a[i];
}
if(ans1 == 0)puts("0");
else if(ans1 == ans2)puts("1");
// else printf("%llu/%llu\n", ans1, ans2);
else printf("%llu/%llu\n", ans1/gcd(ans1, ans2), ans2/gcd(ans1, ans2));
}
return 0;
}
dp的做法是用f[i][j]存投掷i次得分为j的概率 转移方程很简单 重点是用分数表示 记得用LCM GCD处理同分和约分 保证分数加减的正确性
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef unsigned long long ULL;
ULL f[25][155], e[25][155];
ULL sum1[25][155], sum2[25][155];
ULL gcd(ULL x, ULL y){
return y?gcd(y,x%y):x;
}
ULL lcm(ULL x, ULL y){
return x/gcd(x,y)*y;
}
int main()
{
// freopen("data.in", "r", stdin);
f[0][0] = e[0][0] = sum1[0][0] = sum2[0][0] = 1;
for(int i = 1; i <= 24; i++){
for(int j = i; j <= 6*i; j++){
ULL FZ = 0, FM = 1, TMP;
for(int k = max(0, j-6); k < j; k++){
if(f[i-1][k] == 0) continue;
TMP = lcm(FM, e[i-1][k]*6);
FZ = FZ*(TMP/FM) + f[i-1][k]*(TMP/(e[i-1][k]*6));
FM = TMP;
TMP = gcd(FZ, FM);
FZ /= TMP, FM /= TMP;
}
f[i][j] = FZ, e[i][j] = FM;
if(i == j){
sum1[i][j] = f[i][j];
sum2[i][j] = e[i][j];
continue;
}
TMP = lcm(sum2[i][j-1], e[i][j]);
FZ = sum1[i][j-1]*(TMP/sum2[i][j-1])+f[i][j]*(TMP/e[i][j]);
FM = TMP;
TMP = gcd(FZ, FM);
sum1[i][j] = FZ/TMP, sum2[i][j] = FM/TMP;
}
}
int n, x;
ULL ans1, ans2;
while(scanf("%d%d", &n, &x) != EOF && n+x){
if(x > 6*n) puts("0");
else if(x <= n) puts("1");
else{
ans1 = sum2[n][x-1] - sum1[n][x-1];
ans2 = sum2[n][x-1];
printf("%llu/%llu\n", ans1, ans2);
}
}
return 0;
}