Recurrent Neural Networks Tutorial

本文介绍如何使用Keras深度学习库构建一个时间序列预测模型,包括数据准备、模型搭建、训练及评估等步骤,并提供完整的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://www.tuicool.com/articles/nQBjUj


# -*- coding: utf-8 -*-
"""
Created on Sat Jun 11 15:30:33 2016

@author: Shemmy
"""
from keras.models import Sequential  
from keras.layers.core import TimeDistributedDense, Dense, Activation, Dropout  
from keras.layers.recurrent import GRU, LSTM
from keras.layers.embeddings import Embedding
from keras.preprocessing import sequence
from keras.optimizers import RMSprop
import numpy as np

def _load_data(data, steps = 4):
    docX, docY = [], []
    for i in range(0, data.shape[0]-steps):
        docX.append(data[i:i+steps,:])
        docY.append(data[i+steps,:])
    return np.array(docX), np.array(docY)

def train_test_split(data, test_size=0.15):
    #    This just splits data to training and testing parts
    X,Y = _load_data(data)
    ntrn = round(X.shape[0] * (1 - test_size))
    X_train, Y_train = X[0:ntrn], Y[0:ntrn]
    X_test, Y_test = X[ntrn:],Y[ntrn:]
    return (X_train, Y_train), (X_test, Y_test)

np.random.seed(0)  # For reproducability
data = np.arange(5).reshape((5,1))
for i in xrange(10):
    data = np.append(data, data, axis=0)
(X_train, y_train), (X_test, y_test) = train_test_split(np.flipud(data))  # retrieve data
print "Data loaded."

in_out_neurons = 1
hidden_neurons = 10

model = Sequential()
model.add(GRU(hidden_neurons, input_dim=in_out_neurons, return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(in_out_neurons))
model.add(Activation("linear"))
model.compile(loss="mean_squared_error", optimizer="rmsprop")
print "Model compiled."

model.fit(X_train, y_train, batch_size=10, nb_epoch=10, validation_split=0.1)
predicted = model.predict(X_test)
print np.sqrt(((predicted - y_test) ** 2).mean(axis=0)).mean()
print predicted


https://github.com/fchollet/keras/issues/1029

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值