摘自 哈佛大学NLP研究组 The Annotated Transformer
http://nlp.seas.harvard.edu/2018/04/03/attention.html
<header class="site-header">
<span><img width="30px" style="margin-top:5px" src="/SEAS.png"></span><span><a class="site-title" href="/">harvardnlp</a></span>
<nav class="site-nav">
<a href="#" class="menu-icon">
<svg viewBox="0 0 18 15">
<path fill="#424242" d="M18,1.484c0,0.82-0.665,1.484-1.484,1.484H1.484C0.665,2.969,0,2.304,0,1.484l0,0C0,0.665,0.665,0,1.484,0 h15.031C17.335,0,18,0.665,18,1.484L18,1.484z"></path>
<path fill="#424242" d="M18,7.516C18,8.335,17.335,9,16.516,9H1.484C0.665,9,0,8.335,0,7.516l0,0c0-0.82,0.665-1.484,1.484-1.484 h15.031C17.335,6.031,18,6.696,18,7.516L18,7.516z"></path>
<path fill="#424242" d="M18,13.516C18,14.335,17.335,15,16.516,15H1.484C0.665,15,0,14.335,0,13.516l0,0 c0-0.82,0.665-1.484,1.484-1.484h15.031C17.335,12.031,18,12.696,18,13.516L18,13.516z"></path>
</svg>
</a>
<div class="trigger">
<a class="page-link" href="/members/">Members</a>
<a class="page-link" href="/rush.html">PI</a>
<a class="page-link" href="/code/">Code</a>
<a class="page-link" href="/papers/">Publications</a>
</div>
</nav>
<div class="page-content">
<div class="wrapper">
<article class="post" itemscope="" itemtype="http://schema.org/BlogPosting">
The Annotated Transformer
from IPython.display import Image
Image(filename='images/aiayn.png')
The Transformer from “Attention is All You Need” has been on a lot of people’s minds over the last year. Besides producing major improvements in translation quality, it provides a new architecture for many other NLP tasks. The paper itself is very clearly written, but the conventional wisdom has been that it is quite difficult to implement correctly.
In this post I present an “annotated” version of the paper in the form of a line-by-line implementation. I have reordered and deleted some sections from the original paper and added comments throughout. This document itself is a working notebook, and should be a completely usable implementation. In total there are 400 lines of library code which can process 27,000 tokens per second on 4 GPUs.
To follow along you will first need to install PyTorch. The complete notebook is also available on github or on Google Colab with free GPUs.
Note this is merely a starting point for researchers and interested developers. The code here is based heavily on our OpenNMT packages. (If helpful feel free to cite.) For other full-sevice implementations of the model check-out Tensor2Tensor (tensorflow) and Sockeye (mxnet).
- Alexander Rush (@harvardnlp or srush@seas.harvard.edu), with help from Vincent Nguyen and Guillaume Klein
Prelims
# !pip install http://download.pytorch.org/whl/cu80/torch-0.3.0.post4-cp36-cp36m-linux_x86_64.whl numpy matplotlib spacy torchtext seaborn
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import math, copy, time
from torch.autograd import Variable
import matplotlib.pyplot as plt
import seaborn
seaborn.set_context(context="talk")
%matplotlib inline
Table of Contents
- Prelims
- Background
- Model Architecture
- Training
- A First Example
- A Real World Example
- Additional Components: BPE, Search, Averaging
- Results
- Conclusion
My comments are blockquoted. The main text is all from the paper itself.
Background
The goal of reducing sequential computation also forms the foundation of the Extended Neural GPU, ByteNet and ConvS2S, all of which use convolutional neural networks as basic building block, computing hidden representations in parallel for all input and output positions. In these models, the number of operations required to relate signals from two arbitrary input or output positions grows in the distance between positions, linearly for ConvS2S and logarithmically for ByteNet. This makes it more difficult to learn dependencies between distant positions. In the Transformer this is reduced to a constant number of operations, albeit at the cost of reduced effective resolution due to averaging attention-weighted positions, an effect we counteract with Multi-Head Attention.
Self-attention, sometimes called intra-attention is an attention mechanism relating different positions of a single sequence in order to compute a representation of the sequence. Self-attention has been used successfully in a variety of tasks including reading comprehension, abstractive summarization, textual entailment and learning task-independent sentence representations. End- to-end memory networks are based on a recurrent attention mechanism instead of sequencealigned recurrence and have been shown to perform well on simple- language question answering and language modeling tasks.
To the best of our knowledge, however, the Transformer is the first transduction model relying entirely on self-attention to compute representations of its input and output without using sequence aligned RNNs or convolution.
Model Architecture
Most competitive neural sequence transduction models have an encoder-decoder structure (cite). Here, the encoder maps an input sequence of symbol representations (x1,…,xn)(x1,…,xn) of symbols one element at a time. At each step the model is auto-regressive (cite), consuming the previously generated symbols as additional input when generating the next.
class EncoderDecoder(nn.Module):
"""
A standard Encoder-Decoder architecture. Base for this and many
other models.
"""
def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
super(EncoderDecoder, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.src_embed = src_embed
self.tgt_embed = tgt_embed
self.generator = generator
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">src</span><span class="p">,</span> <span class="n">tgt</span><span class="p">,</span> <span class="n">src_mask</span><span class="p">,</span> <span class="n">tgt_mask</span><span class="p">):</span>
<span class="s">"Take in and process masked src and target sequences."</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">decode</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">encode</span><span class="p">(</span><span class="n">src</span><span class="p">,</span> <span class="n">src_mask</span><span class="p">),</span> <span class="n">src_mask</span><span class="p">,</span>
<span class="n">tgt</span><span class="p">,</span> <span class="n">tgt_mask</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">encode</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">src</span><span class="p">,</span> <span class="n">src_mask</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">encoder</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">src_embed</span><span class="p">(</span><span class="n">src</span><span class="p">),</span> <span class="n">src_mask</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">decode</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">memory</span><span class="p">,</span> <span class="n">src_mask</span><span class="p">,</span> <span class="n">tgt</span><span class="p">,</span> <span class="n">tgt_mask</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">decoder</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">tgt_embed</span><span class="p">(</span><span class="n">tgt</span><span class="p">),</span> <span class="n">memory</span><span class="p">,</span> <span class="n">src_mask</span><span class="p">,</span> <span class="n">tgt_mask</span><span class="p">)</span></code></pre></figure>
class Generator(nn.Module):
"Define standard linear + softmax generation step."
def __init__(self, d_model, vocab):
super(Generator, self).__init__()
self.proj = nn.Linear(d_model, vocab)
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="k">return</span> <span class="n">F</span><span class="o">.</span><span class="n">log_softmax</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">proj</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span></code></pre></figure>
The Transformer follows this overall architecture using stacked self-attention and point-wise, fully connected layers for both the encoder and decoder, shown in the left and right halves of Figure 1, respectively.
Image(filename='images/ModalNet-21.png')
Encoder and Decoder Stacks
Encoder
The encoder is composed of a stack of N=6N=6 identical layers.
def clones(module, N):
"Produce N identical layers."
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
class Encoder(nn.Module):
"Core encoder is a stack of N layers"
def __init__(self, layer, N):
super(Encoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">mask</span><span class="p">):</span>
<span class="s">"Pass the input (and mask) through each layer in turn."</span>
<span class="k">for</span> <span class="n">layer</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">layers</span><span class="p">:</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">layer</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">mask</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></code></pre></figure>
We employ a residual connection (cite) around each of the two sub-layers, followed by layer normalization (cite).
class LayerNorm(nn.Module):
"Construct a layernorm module (See citation for details)."
def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">mean</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">keepdim</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="n">std</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">std</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">keepdim</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">a_2</span> <span class="o">*</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="n">mean</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">std</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">b_2</span></code></pre></figure>
That is, the output of each sub-layer is LayerNorm(x+Sublayer(x))LayerNorm(x+Sublayer(x)) is the function implemented by the sub-layer itself. We apply dropout (cite) to the output of each sub-layer, before it is added to the sub-layer input and normalized.
To facilitate these residual connections, all sub-layers in the model, as well as the embedding layers, produce outputs of dimension dmodel=512dmodel=512.
class SublayerConnection(nn.Module):
"""
A residual connection followed by a layer norm.
Note for code simplicity the norm is first as opposed to last.
"""
def __init__(self, size, dropout):
super(SublayerConnection, self).__init__()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">sublayer</span><span class="p">):</span>
<span class="s">"Apply residual connection to any sublayer with the same size."</span>
<span class="k">return</span> <span class="n">x</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">dropout</span><span class="p">(</span><span class="n">sublayer</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">norm</span><span class="p">(</span><span class="n">x</span><span class="p">)))</span></code></pre></figure>
Each layer has two sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-wise fully connected feed- forward network.
class EncoderLayer(nn.Module):
"Encoder is made up of self-attn and feed forward (defined below)"
def __init__(self, size, self_attn, feed_forward, dropout):
super(EncoderLayer, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 2)
self.size = size
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">mask</span><span class="p">):</span>
<span class="s">"Follow Figure 1 (left) for connections."</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sublayer</span><span class="p">[</span><span class="mi">0</span><span class="p">](</span><span class="n">x</span><span class="p">,</span> <span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">self_attn</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">mask</span><span class="p">))</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">sublayer</span><span class="p">[</span><span class="mi">1</span><span class="p">](</span><span class="n">x</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">feed_forward</span><span class="p">)</span></code></pre></figure>
Decoder
The decoder is also composed of a stack of N=6N=6 identical layers.
class Decoder(nn.Module):
"Generic N layer decoder with masking."
def __init__(self, layer, N):
super(Decoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">memory</span><span class="p">,</span> <span class="n">src_mask</span><span class="p">,</span> <span class="n">tgt_mask</span><span class="p">):</span>
<span class="k">for</span> <span class="n">layer</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">layers</span><span class="p">:</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">layer</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">memory</span><span class="p">,</span> <span class="n">src_mask</span><span class="p">,</span> <span class="n">tgt_mask</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></code></pre></figure>
In addition to the two sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head attention over the output of the encoder stack. Similar to the encoder, we employ residual connections around each of the sub-layers, followed by layer normalization.
class DecoderLayer(nn.Module):
"Decoder is made of self-attn, src-attn, and feed forward (defined below)"
def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
super(DecoderLayer, self).__init__()
self.size = size
self.self_attn = self_attn
self.src_attn = src_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 3)
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">memory</span><span class="p">,</span> <span class="n">src_mask</span><span class="p">,</span> <span class="n">tgt_mask</span><span class="p">):</span>
<span class="s">"Follow Figure 1 (right) for connections."</span>
<span class="n">m</span> <span class="o">=</span> <span class="n">memory</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sublayer</span><span class="p">[</span><span class="mi">0</span><span class="p">](</span><span class="n">x</span><span class="p">,</span> <span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">self_attn</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">tgt_mask</span><span class="p">))</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sublayer</span><span class="p">[</span><span class="mi">1</span><span class="p">](</span><span class="n">x</span><span class="p">,</span> <span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">src_attn</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">m</span><span class="p">,</span> <span class="n">m</span><span class="p">,</span> <span class="n">src_mask</span><span class="p">))</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">sublayer</span><span class="p">[</span><span class="mi">2</span><span class="p">](</span><span class="n">x</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">feed_forward</span><span class="p">)</span></code></pre></figure>
We also modify the self-attention sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This masking, combined with fact that the output embeddings are offset by one position, ensures that the predictions for position ii.
def subsequent_mask(size):
"Mask out subsequent positions."
attn_shape = (1, size, size)
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
return torch.from_numpy(subsequent_mask) == 0
Below the attention mask shows the position each tgt word (row) is allowed to look at (column). Words are blocked for attending to future words during training.
plt.figure(figsize=(5,5))
plt.imshow(subsequent_mask(20)[0])
None
Attention
An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is computed as a weighted sum of the values, where the weight assigned to each value is computed by a compatibility function of the query with the corresponding key.
We call our particular attention “Scaled Dot-Product Attention”. The input consists of queries and keys of dimension dkdk, and apply a softmax function to obtain the weights on the values.
Image(filename='images/ModalNet-19.png')
In practice, we compute the attention function on a set of queries simultaneously, packed together into a matrix QQ. We compute the matrix of outputs as:
def attention(query, key, value, mask=None, dropout=None):
"Compute 'Scaled Dot Product Attention'"
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) \
/ math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = F.softmax(scores, dim = -1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
The two most commonly used attention functions are additive attention (cite), and dot-product (multiplicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor of 1dk√1dk. Additive attention computes the compatibility function using a feed-forward network with a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is much faster and more space-efficient in practice, since it can be implemented using highly optimized matrix multiplication code.
While for small values of dkdk.
Image(filename='images/ModalNet-20.png')
Multi-head attention allows the model to jointly attend to information from different representation subspaces at different positions. With a single attention head, averaging inhibits this. MultiHead(Q,K,V)=Concat(head1,...,headh)WOwhere headi=Attention(QWQi,KWKi,VWVi)MultiHead(Q,K,V)=Concat(head1,...,headh)WOwhere headi=Attention(QWiQ,KWiK,VWiV)
Where the projections are parameter matrices WQi∈ℝdmodel×dkWiQ∈Rdmodel×dk. Due to the reduced dimension of each head, the total computational cost is similar to that of single-head attention with full dimensionality.
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model, dropout=0.1):
"Take in model size and number of heads."
super(MultiHeadedAttention, self).__init__()
assert d_model % h == 0
# We assume d_v always equals d_k
self.d_k = d_model // h
self.h = h
self.linears = clones(nn.Linear(d_model, d_model), 4)
self.attn = None
self.dropout = nn.Dropout(p=dropout)
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
<span class="s">"Implements Figure 2"</span>
<span class="k">if</span> <span class="n">mask</span> <span class="ow">is</span> <span class="ow">not</span> <span class="bp">None</span><span class="p">:</span>
<span class="c"># Same mask applied to all h heads.</span>
<span class="n">mask</span> <span class="o">=</span> <span class="n">mask</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="n">nbatches</span> <span class="o">=</span> <span class="n">query</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="c"># 1) Do all the linear projections in batch from d_model => h x d_k </span>
<span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="o">=</span> \
<span class="p">[</span><span class="n">l</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">nbatches</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">h</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">d_k</span><span class="p">)</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="k">for</span> <span class="n">l</span><span class="p">,</span> <span class="n">x</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">linears</span><span class="p">,</span> <span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span><span class="p">))]</span>
<span class="c"># 2) Apply attention on all the projected vectors in batch. </span>
<span class="n">x</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">attn</span> <span class="o">=</span> <span class="n">attention</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">,</span>
<span class="n">dropout</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">dropout</span><span class="p">)</span>
<span class="c"># 3) "Concat" using a view and apply a final linear. </span>
<span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">contiguous</span><span class="p">()</span> \
<span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">nbatches</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">h</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">d_k</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">linears</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">](</span><span class="n">x</span><span class="p">)</span></code></pre></figure>
Applications of Attention in our Model
The Transformer uses multi-head attention in three different ways: 1) In “encoder-decoder attention” layers, the queries come from the previous decoder layer, and the memory keys and values come from the output of the encoder. This allows every position in the decoder to attend over all positions in the input sequence. This mimics the typical encoder-decoder attention mechanisms in sequence-to-sequence models such as (cite).
2) The encoder contains self-attention layers. In a self-attention layer all of the keys, values and queries come from the same place, in this case, the output of the previous layer in the encoder. Each position in the encoder can attend to all positions in the previous layer of the encoder.
3) Similarly, self-attention layers in the decoder allow each position in the decoder to attend to all positions in the decoder up to and including that position. We need to prevent leftward information flow in the decoder to preserve the auto-regressive property. We implement this inside of scaled dot- product attention by masking out (setting to −∞−∞) all values in the input of the softmax which correspond to illegal connections.
Position-wise Feed-Forward Networks
In addition to attention sub-layers, each of the layers in our encoder and decoder contains a fully connected feed-forward network, which is applied to each position separately and identically. This consists of two linear transformations with a ReLU activation in between.
While the linear transformations are the same across different positions, they use different parameters from layer to layer. Another way of describing this is as two convolutions with kernel size 1. The dimensionality of input and output is dmodel=512dmodel=512.
class PositionwiseFeedForward(nn.Module):
"Implements FFN equation."
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">w_2</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">dropout</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">w_1</span><span class="p">(</span><span class="n">x</span><span class="p">))))</span></code></pre></figure>
Embeddings and Softmax
Similarly to other sequence transduction models, we use learned embeddings to convert the input tokens and output tokens to vectors of dimension dmodeldmodel.
class Embeddings(nn.Module):
def __init__(self, d_model, vocab):
super(Embeddings, self).__init__()
self.lut = nn.Embedding(vocab, d_model)
self.d_model = d_model
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">lut</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="o">*</span> <span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">d_model</span><span class="p">)</span></code></pre></figure>
Positional Encoding
Since our model contains no recurrence and no convolution, in order for the model to make use of the order of the sequence, we must inject some information about the relative or absolute position of the tokens in the sequence. To this end, we add “positional encodings” to the input embeddings at the bottoms of the encoder and decoder stacks. The positional encodings have the same dimension dmodeldmodel as the embeddings, so that the two can be summed. There are many choices of positional encodings, learned and fixed (cite).
In this work, we use sine and cosine functions of different frequencies: PE(pos,2i)=sin(pos/100002i/dmodel)PE(pos,2i)=sin(pos/100002i/dmodel)
PE(pos,2i+1)=cos(pos/100002i/dmodel)PE(pos,2i+1)=cos(pos/100002i/dmodel).
In addition, we apply dropout to the sums of the embeddings and the positional encodings in both the encoder and decoder stacks. For the base model, we use a rate of Pdrop=0.1Pdrop=0.1.
class PositionalEncoding(nn.Module):
"Implement the PE function."
def __init__(self, d_model, dropout, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
<span class="c"># Compute the positional encodings once in log space.</span>
<span class="n">pe</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">max_len</span><span class="p">,</span> <span class="n">d_model</span><span class="p">)</span>
<span class="n">position</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">max_len</span><span class="p">)</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="n">div_term</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">d_model</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span> <span class="o">*</span>
<span class="o">-</span><span class="p">(</span><span class="n">math</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mf">10000.0</span><span class="p">)</span> <span class="o">/</span> <span class="n">d_model</span><span class="p">))</span>
<span class="n">pe</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">::</span><span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">position</span> <span class="o">*</span> <span class="n">div_term</span><span class="p">)</span>
<span class="n">pe</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">::</span><span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cos</span><span class="p">(</span><span class="n">position</span> <span class="o">*</span> <span class="n">div_term</span><span class="p">)</span>
<span class="n">pe</span> <span class="o">=</span> <span class="n">pe</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">register_buffer</span><span class="p">(</span><span class="s">'pe'</span><span class="p">,</span> <span class="n">pe</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">x</span> <span class="o">+</span> <span class="n">Variable</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">pe</span><span class="p">[:,</span> <span class="p">:</span><span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">1</span><span class="p">)],</span>
<span class="n">requires_grad</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">dropout</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></code></pre></figure>
Below the positional encoding will add in a sine wave based on position. The frequency and offset of the wave is different for each dimension.
plt.figure(figsize=(15, 5))
pe = PositionalEncoding(20, 0)
y = pe.forward(Variable(torch.zeros(1, 100, 20)))
plt.plot(np.arange(100), y[0, :, 4:8].data.numpy())
plt.legend(["dim %d"%p for p in [4,5,6,7]])
None
We also experimented with using learned positional embeddings (cite) instead, and found that the two versions produced nearly identical results. We chose the sinusoidal version because it may allow the model to extrapolate to sequence lengths longer than the ones encountered during training.
Full Model
Here we define a function that takes in hyperparameters and produces a full model.