10. Regular Expression Matching
Hard
3194594FavoriteShare
Given an input string (s
) and a pattern (p
), implement regular expression matching with support for '.'
and '*'
.
'.' Matches any single character.
'*' Matches zero or more of the preceding element.
The matching should cover the entire input string (not partial).
Note:
s
could be empty and contains only lowercase lettersa-z
.p
could be empty and contains only lowercase lettersa-z
, and characters like.
or*
.
Example 1:
Input:
s = "aa"
p = "a"
Output: false
Explanation: "a" does not match the entire string "aa".
Example 2:
Input:
s = "aa"
p = "a*"
Output: true
Explanation: '*' means zero or more of the preceding element, 'a'. Therefore, by repeating 'a' once, it becomes "aa".
Example 3:
Input:
s = "ab"
p = ".*"
Output: true
Explanation: ".*" means "zero or more (*) of any character (.)".
Example 4:
Input:
s = "aab"
p = "c*a*b"
Output: true
Explanation: c can be repeated 0 times, a can be repeated 1 time. Therefore, it matches "aab".
Example 5:
Input:
s = "mississippi"
p = "mis*is*p*."
Output: false
Accepted
352,573
Submissions
1,364,685
class Solution {
public:
bool isMatch(string text, string pattern) {
if (pattern.empty()) return text.empty();
bool first_match = (!text.empty() &&
(pattern[0] == text[0] || pattern[0] == '.'));
//只有长度大于 2 的时候,才考虑 *
if (pattern.length() >= 2 && pattern[1] == '*'){
//两种情况
//pattern 直接跳过两个字符。表示 * 前边的字符出现 0 次
//pattern 不变,例如 text = aa ,pattern = a*,第一个 a 匹配,然后 text 的第二个 a 接着和 pattern 的第一个 a 进行匹配。表示 * 用前一个字符替代。
return (isMatch(text, pattern.substr(2)) ||
(first_match && isMatch(text.substr(1), pattern)));
} else {
return first_match && isMatch(text.substr(1), pattern.substr(1));
}
}
};
class Solution {
public:
bool isMatch(string s, string p) {
int m=s.length();
int n=p.length();
bool dp[m+1][n+1];
dp[0][0]=true;
for(int i=1;i<=m;i++){
dp[i][0]=false;//空串p只可以跟空串s匹配,其他的都为false
}
for(int j=1;j<=n;j++){//空串s可以和空串p匹配,还可以和"x*"匹配
if(j==1) dp[0][j]=false;
else{
if(p[j-1]=='*'){
dp[0][j]=dp[0][j-2];
}else{
dp[0][j]=false;
}
}
}
for(int i=1;i<=m;i++){//下面这些可以看上面的那个分析
for(int j=1;j<=n;j++){
if(p[j-1]!='*'){
dp[i][j]=(s[i-1]==p[j-1]||p[j-1]=='.')&&dp[i-1][j-1];
}else{
if(p[j-2]!=s[i-1]&&p[j-2]!='.'){
dp[i][j]=dp[i][j-2];
}else{
dp[i][j]=dp[i][j-2]||dp[i][j-1]||dp[i-1][j];
}
}
}
}
return dp[m][n];
}
};