在做leetcode 48. 旋转图像时发现,C++和python代码实现不一样
C++
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
int n = matrix.size();
// C++ 这里的 = 拷贝是值拷贝,会得到一个新的数组
auto matrix_new = matrix;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
matrix_new[j][n - i - 1] = matrix[i][j];
}
}
// 这里也是值拷贝
matrix = matrix_new;
}
};
python:
class Solution:
def rotate(self, matrix: List[List[int]]) -> None:
n = len(matrix)
# Python 这里不能 matrix_new = matrix 或 matrix_new = matrix[:] 因为是引用拷贝
matrix_new = [[0] * n for _ in range(n)]
for i in range(n):
for j in range(n):
matrix_new[j][n - i - 1] = matrix[i][j]
# 不能写成 matrix = matrix_new
matrix[:] = matrix_new
原理如下:
在C++/Java里,int a = 1
就是创建变量为a,赋值为1;int b = a
就是创建变量b,赋值为a的值。a与b是毫不相干的,即“变量是盒子”,但是这不利于理解Python中的一个变量定义。在Python里,我们把变量视为“一个实际存储的引用”
所以在python里,a = [1, 2, 3]
先分配一块区域写入[1,2,3]
,再让a来代表它;b = a
让b与a代表了同一个东西,即使a本身消失了(比如del a
),也仅仅是撕下来一张标签而已,b仍然可以访问这个列表。
直接引用即b = a
,正如上文所说,不会发生拷贝,只是让b也来代表a代表的区域。此时b就是a,b[0]也就是a[0]。
如果修改了a,等于让a指向其他对象,与列表无关,所以b没有变化;而如果修改a[0](或者使用+=,append等),则修改了列表,b[0]也在变化。
Python中的浅拷贝与深拷贝
浅拷贝
有些时候我们只编辑列表或字典的副本,所以需要复制,一般最常见的复制方法有:
b = a[:]
b = list(_ for _ in a)
b = copy(a)
b = a.copy()
浅复制的逻辑将创建一个新对象,然后将每一个值复制一份放入新对象里,花费线性时间。可以看到复制后b与a完全一致,但是a is b
不再成立了,a[0]和b[0]也是不再相关的值,你可以任意修改列表b,都不会影响到a里的四个元素(红蓝橙绿四个小圆)。
深拷贝
但是浅复制仍然有不能解决的问题。我们知道python里一切皆引用,图里的小圆不是盒子而是标签!,虽然a与b本身已经分开了,但如果有一个元素仍然是列表,那他们其实还是联系在一起的。
如图,浅复制时执行了b[1]=a[1],但b[1]和a[1]是引用,因此通过他们访问的仍然是同一个可变序列,修改a[1]不会导致b[1]变化,但修改a[1][0]却导致b[1][0]变化。
所以我们引入深复制解决这个问题:
from
copy
import
deepcopy
a
=
[
1
, [
1
,
2
,
3
],
"hello"
]
b
=
deepcopy(a)
深复制的逻辑是,将每一个值复制放进新一个对象里,而如果这一项也表示一个可变的迭代对象(列表,字典,没有特殊定制的自定义类),就将这个对象也复制一份。这样就可以得到一份完全的拷贝。